TY - GEN
T1 - Effect of Negative Poisson's Ratio on the Tensile Properties of Auxetic CFRP Composites
AU - Lin, Wenhua
AU - Wang, Yeqing
N1 - Publisher Copyright:
© Proceedings of the American Society for Composites - 37th Technical Conference, ASC 2022. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Carbon fiber reinforced polymer (CFRP) matrix composites have become increasingly popular across industries such as aerospace and automotive industries due to its outstanding mechanical properties and significant weight saving capability. CFRP composites are also widely known to be highly tailorable. For instance, different laminate-level mechanical properties for CFRP composites can be achieved by varying the individual carbon fiber laminar arrangements, among one of them is the Poisson's ratio. Conventional materials have a positive Poisson's ratio (PPR), visualize any conventional materials in a 2D block shape, when stretching that material in longitudinal direction, contraction follows on the transverse direction, whereas for materials with a negative Poisson's ratio (NPR), stretching in the longitudinal direction leads to expansion in the transverse direction. Materials with NPRs have been shown to improve the indentation and impact resistances, when compared to equivalent materials with PPRs. However, producing NPRs could potentially compromise other properties, such as tensile properties, which has not been reported. The current work investigates the effects of NPR on the tensile properties of CFRP composites. Specifically, a laminate-level NPR of -0.4094 in the in-plane direction is achieved through ply arrangement of CFRP composites using classical lamination theory (CLT). The non-auxetic counterpart CFRP composites are designed to produce an PPR of 0.1598 in the in-plane direction while simultaneously match their elastic moduli in three directions with those of the auxetic composites. Results show that the predicted tensile modulus and in-plane Poisson's ratio were in excellent agreement with the experiment results. It was found that the ultimate tensile strength and failure strain or ductility of auxetic specimens were on average 40% lower than those of the conventional CFRP composites.
AB - Carbon fiber reinforced polymer (CFRP) matrix composites have become increasingly popular across industries such as aerospace and automotive industries due to its outstanding mechanical properties and significant weight saving capability. CFRP composites are also widely known to be highly tailorable. For instance, different laminate-level mechanical properties for CFRP composites can be achieved by varying the individual carbon fiber laminar arrangements, among one of them is the Poisson's ratio. Conventional materials have a positive Poisson's ratio (PPR), visualize any conventional materials in a 2D block shape, when stretching that material in longitudinal direction, contraction follows on the transverse direction, whereas for materials with a negative Poisson's ratio (NPR), stretching in the longitudinal direction leads to expansion in the transverse direction. Materials with NPRs have been shown to improve the indentation and impact resistances, when compared to equivalent materials with PPRs. However, producing NPRs could potentially compromise other properties, such as tensile properties, which has not been reported. The current work investigates the effects of NPR on the tensile properties of CFRP composites. Specifically, a laminate-level NPR of -0.4094 in the in-plane direction is achieved through ply arrangement of CFRP composites using classical lamination theory (CLT). The non-auxetic counterpart CFRP composites are designed to produce an PPR of 0.1598 in the in-plane direction while simultaneously match their elastic moduli in three directions with those of the auxetic composites. Results show that the predicted tensile modulus and in-plane Poisson's ratio were in excellent agreement with the experiment results. It was found that the ultimate tensile strength and failure strain or ductility of auxetic specimens were on average 40% lower than those of the conventional CFRP composites.
UR - http://www.scopus.com/inward/record.url?scp=85139555325&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85139555325&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85139555325
T3 - Proceedings of the American Society for Composites - 37th Technical Conference, ASC 2022
BT - Proceedings of the American Society for Composites - 37th Technical Conference, ASC 2022
A2 - Zhupanska, Olesya
A2 - Madenci, Erdogan
PB - DEStech Publications Inc.
T2 - 37th Technical Conference of the American Society for Composites, ASC 2022
Y2 - 19 September 2022 through 21 September 2022
ER -