Abstract
Exercise in hypoxia places added demands on the brain and cerebrovasculature that can impact cognitive function. The purpose of this study was to investigate the effect of acute hypoxia on cerebrovascular hemodynamics, markers of neuro-steroidal modulation and brain-blood barrier (BBB) integrity, and cognition during exercise. Thirty healthy participants (21 ± 4 yrs., BMI 24.0 ± 2.6 kg ∙ m− 2; 15 men) were randomized to both a ≈ 2.5 h normoxic (FiO2 20.0%) and hypoxic (FiO2 12.5%) condition on two separate days. After 1.25 h, participants underwent 10 min of exercise-alone (cycling at 55% HRmax) and 15 min of exercise + cognitive testing. Prefrontal cortex (PFC) tissue oxygenation and middle cerebral artery (MCA) mean blood velocity (MnV) were measured using near-infrared spectroscopy and transcranial Doppler respectively at rest, during exercise-alone, and during exercise + cognitive testing. Salivary levels of dehydroepiandosterone [DHEA], DHEA-sulfate [DHEAS]) and neuron specific enolase (NSE) were measured pre and post exercise. Cognition was assessed using standard metrics of accuracy and reaction time (RT), and advanced metrics from drift-diffusion modeling across memory recognition, N-Back and Flanker tasks. MCA MnV increased from rest to exercise (p
Original language | English (US) |
---|---|
Pages (from-to) | 108-118 |
Number of pages | 11 |
Journal | Physiology and Behavior |
Volume | 165 |
DOIs | |
State | Published - Oct 15 2016 |
Keywords
- Cerebral hemodynamics
- Cognitive
- Exercise
- Hypoxia
ASJC Scopus subject areas
- Behavioral Neuroscience
- Experimental and Cognitive Psychology
- Philosophy