Dynamics of flux-line liquids in high-Tc superconductors

M Cristina Marchetti, David R. Nelson

Research output: Contribution to journalArticle

80 Scopus citations

Abstract

A hydrodynamic theory of the flux line lattice and the isotropic and hexatic flux line liquids in high-Tc superconductors is presented. Weak microscopic pinning centers are described within the flux flow model of Bardeen and Stephen, while strong macroscopic pinning centers set the boundary conditions for the flow. A large intervortex viscosity, which we attribute to entanglement, allows the effects of a few strong pins to propagate large distances in the fluid phases. In thin films, the diverging viscosity associated with a continuous freezing transition should produce similar effects. We propose a simple experiment to observe this pinning length scale and distinguish between various theories of the resistivity drop. The hydrodynamic modes of flux line solids, hexatics and liquids are discussed. Weak pinning shows up as an elastic peak in the dynamic correlation functions. The macroscopic flow of a flux liquid driven by a uniform external current in the presence of macroscopic obstacles of specified geometry is also described.

Original languageEnglish (US)
Pages (from-to)40-62
Number of pages23
JournalPhysica C: Superconductivity and its Applications
Volume174
Issue number1-3
DOIs
StatePublished - Mar 1 1991

    Fingerprint

ASJC Scopus subject areas

  • Condensed Matter Physics

Cite this