Dynamic thermal management for FinFET-based circuits exploiting the temperature effect inversion phenomenon

Woojoo Lee, Yanzhi Wang, Tiansong Cui, Shahin Nazarian, Massoud Pedram

Research output: Chapter in Book/Entry/PoemConference contribution

34 Scopus citations

Abstract

Due to limits on the availability of the energy source in many mobile user platforms (ranging from handheld devices to portable electronics to deeply embedded devices) and concerns about how much heat can effectively be removed from chips, minimizing the power consumption has become a primary driver for system-on-chip designers. Because of their superb characteristics, FinFETs have emerged as a promising replacement for planar CMOS devices in sub-20nm CMOS technology nodes. However, based on extensive simulations, we have observed that the delay vs. temperature characteristics of FinFET-based circuits are fundamentally different from that of the conventional bulk CMOS circuits, i.e., the delay of a FinFET circuit decreases with increasing temperature even in the super-threshold supply voltage regime. Unfortunately, the leakage power dissipation of the FinFET-based circuits increases exponentially with the temperature. These two trends give rise to a tradeoff between delay and leakage power as a function of the chip temperature, and hence, lead to the definition of an optimum chip temperature operating point (i.e., one that balances concerns about the circuit speed and power efficiency.) This paper presents the results of our investigations into the aforesaid temperature effect inversion (TEI) and proposes a novel dynamic thermal management (DTM) algorithm, which exploits this phenomenon to minimize the energy consumption of FinFET-based circuits without any appreciable performance penalty. Experimental results demonstrate 40% energy saving (with no performance penalty) can be achieved by the proposed TEI-aware DTM approach compared to the best-in-class DTMs that are unaware of this phenomenon.

Original languageEnglish (US)
Title of host publicationProceedings of the 2014 ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages105-110
Number of pages6
ISBN (Electronic)9781450329750
DOIs
StatePublished - Oct 13 2015
EventACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED 2014 - La Jolla, United States
Duration: Aug 11 2014Aug 13 2014

Publication series

NameProceedings of the International Symposium on Low Power Electronics and Design
Volume2015-October
ISSN (Print)1533-4678

Conference

ConferenceACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED 2014
Country/TerritoryUnited States
CityLa Jolla
Period8/11/148/13/14

Keywords

  • FinFET
  • Low-power designs
  • Thermal management

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Dynamic thermal management for FinFET-based circuits exploiting the temperature effect inversion phenomenon'. Together they form a unique fingerprint.

Cite this