Dynamic and thermodynamic influences on precipitation in Northeast Mexico on orbital to millennial timescales

Kevin T. Wright, Kathleen R. Johnson, Gabriela Serrato Marks, David McGee, Tripti Bhattacharya, Gregory R. Goldsmith, Clay R. Tabor, Jean Louis Lacaille-Muzquiz, Gianna Lum, Laura Beramendi-Orosco

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The timing and mechanisms of past hydroclimate change in northeast Mexico are poorly constrained, limiting our ability to evaluate climate model performance. To address this, we present a multiproxy speleothem record of past hydroclimate variability spanning 62.5 to 5.1 ka from Tamaulipas, Mexico. Here we show a strong influence of Atlantic and Pacific sea surface temperatures on orbital and millennial scale precipitation changes in the region. Multiple proxies show no clear response to insolation forcing, but strong evidence for dry conditions during Heinrich Stadials. While these trends are consistent with other records from across Mesoamerica and the Caribbean, the relative importance of thermodynamic and dynamic controls in driving this response is debated. An isotope-enabled climate model shows that cool Atlantic SSTs and stronger easterlies drive a strong inter-basin sea surface temperature gradient and a southward shift in moisture convergence, causing drying in this region.

Original languageEnglish (US)
Article number2279
JournalNature Communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Dynamic and thermodynamic influences on precipitation in Northeast Mexico on orbital to millennial timescales'. Together they form a unique fingerprint.

Cite this