TY - JOUR
T1 - Div-curl fields of finite distortion
AU - Iwaniec, Tadeusz
AU - Sbordone, Carlo
PY - 1998/10
Y1 - 1998/10
N2 - Regularity results for div-curl fields (B, E) ∈ Lqloc (Ω, ℝn × ℝn), q>1, div B = 0, curl E = 0 of finite distortion K : Ω ⊂ ℝn → [1, ∞), i.e. satisfying a.e. in Ω |B(x)|2 + |E(x)|2 ≤ (K(x) + K-1 (x)) 〈B(x), E(x)〉, are given, in analogy with the theory of quasiconformal mappings in the plane. Almost optimal integrability theorems for the gradient of weak solutions to some linear and nonlinear pde's follow.
AB - Regularity results for div-curl fields (B, E) ∈ Lqloc (Ω, ℝn × ℝn), q>1, div B = 0, curl E = 0 of finite distortion K : Ω ⊂ ℝn → [1, ∞), i.e. satisfying a.e. in Ω |B(x)|2 + |E(x)|2 ≤ (K(x) + K-1 (x)) 〈B(x), E(x)〉, are given, in analogy with the theory of quasiconformal mappings in the plane. Almost optimal integrability theorems for the gradient of weak solutions to some linear and nonlinear pde's follow.
UR - http://www.scopus.com/inward/record.url?scp=0032188059&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032188059&partnerID=8YFLogxK
U2 - 10.1016/S0764-4442(98)80160-2
DO - 10.1016/S0764-4442(98)80160-2
M3 - Article
AN - SCOPUS:0032188059
SN - 0764-4442
VL - 327
SP - 729
EP - 734
JO - Comptes Rendus de l'Academie des Sciences - Series I: Mathematics
JF - Comptes Rendus de l'Academie des Sciences - Series I: Mathematics
IS - 8
ER -