Dilaton dynamics from production of tensionless membranes

Sera Cremonini, Scott Watson

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

In this paper we consider classical and quantum corrections to cosmological solutions of 11D supergravity (SUGRA) coming from dynamics of membrane states. We first consider the supermembrane spectrum following the approach of Russo and Tseytlin for consistent quantization. We calculate the production rate of Bogomol'nyi-Prasad-Sommerfield (BPS) membrane bound states in a cosmological background and find that such effects are generically suppressed by the Planck scale, as expected. However, for a modified brane spectrum possessing enhanced symmetry, production can be finite and significant. We stress that this effect could not be anticipated given only a knowledge of the low-energy effective theory. Once on shell, inclusion of these states leads to an attractive force pulling the dilaton towards a fixed point of S-duality, namely gs=1. Although the SUGRA description breaks down in this regime, inclusion of the enhanced states suggests that the center of M-theory moduli space is a dynamical attractor. Moreover, our results seem to suggest that string dynamics does indeed favor a vacuum near fixed points of duality.

Original languageEnglish (US)
Article number086007
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume73
Issue number8
DOIs
StatePublished - 2006
Externally publishedYes

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Dilaton dynamics from production of tensionless membranes'. Together they form a unique fingerprint.

Cite this