TY - GEN
T1 - Differentially Private and Fair Deep Learning:A Lagrangian Dual Approach
AU - Tran, Cuong
AU - Fioretto, Ferdinando
AU - Van Hentenryck, Pascal
N1 - Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2021
Y1 - 2021
N2 - A critical concern in data-driven decision making is to build models whose outcomes do not discriminate against some demographic groups, including gender, ethnicity, or age. To ensure non-discrimination in learning tasks, knowledge of the sensitive attributes is essential, while, in practice, these attributes may not be available due to legal and ethical requirements. To address this challenge, this paper studies a model that protects the privacy of the individuals’ sensitive information while also allowing it to learn non-discriminatory predictors. The method relies on the notion of differential privacy and the use of Lagrangian duality to design neural networks that can accommodate fairness constraints while guaranteeing the privacy of sensitive attributes. The paper analyses the tension between accuracy, privacy, and fairness and the experimental evaluation illustrates the benefits of the proposed model on several prediction tasks.
AB - A critical concern in data-driven decision making is to build models whose outcomes do not discriminate against some demographic groups, including gender, ethnicity, or age. To ensure non-discrimination in learning tasks, knowledge of the sensitive attributes is essential, while, in practice, these attributes may not be available due to legal and ethical requirements. To address this challenge, this paper studies a model that protects the privacy of the individuals’ sensitive information while also allowing it to learn non-discriminatory predictors. The method relies on the notion of differential privacy and the use of Lagrangian duality to design neural networks that can accommodate fairness constraints while guaranteeing the privacy of sensitive attributes. The paper analyses the tension between accuracy, privacy, and fairness and the experimental evaluation illustrates the benefits of the proposed model on several prediction tasks.
UR - http://www.scopus.com/inward/record.url?scp=85130063398&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85130063398&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85130063398
T3 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
SP - 9932
EP - 9939
BT - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
PB - Association for the Advancement of Artificial Intelligence
T2 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
Y2 - 2 February 2021 through 9 February 2021
ER -