TY - GEN
T1 - Differential privacy for stackelberg games
AU - Fioretto, Ferdinando
AU - Mitridati, Lesia
AU - van Hentenryck, Pascal
N1 - Publisher Copyright:
© 2020 Inst. Sci. inf., Univ. Defence in Belgrade. All rights reserved.
PY - 2020
Y1 - 2020
N2 - This paper introduces a differentially private (DP) mechanism to protect the information exchanged during the coordination of sequential and interdependent markets. This coordination represents a classic Stackelberg game and relies on the exchange of sensitive information between the system agents. The paper is motivated by the observation that the perturbation introduced by traditional DP mechanisms fundamentally changes the underlying optimization problem and even leads to unsatisfiable instances. To remedy such limitation, the paper introduces the Privacy-Preserving Stackelberg Mechanism (PPSM), a framework that enforces the notions of feasibility and fidelity (i.e. near-optimality) of the privacy-preserving information to the original problem objective. PPSM complies with the notion of differential privacy and ensures that the outcomes of the privacy-preserving coordination mechanism are close-to-optimality for each agent. Experimental results on several gas and electricity market benchmarks based on a real case study demonstrate the effectiveness of the proposed approach. A full version of this paper [Fioretto et al., 2020b] contains complete proofs and additional discussion on the motivating application.
AB - This paper introduces a differentially private (DP) mechanism to protect the information exchanged during the coordination of sequential and interdependent markets. This coordination represents a classic Stackelberg game and relies on the exchange of sensitive information between the system agents. The paper is motivated by the observation that the perturbation introduced by traditional DP mechanisms fundamentally changes the underlying optimization problem and even leads to unsatisfiable instances. To remedy such limitation, the paper introduces the Privacy-Preserving Stackelberg Mechanism (PPSM), a framework that enforces the notions of feasibility and fidelity (i.e. near-optimality) of the privacy-preserving information to the original problem objective. PPSM complies with the notion of differential privacy and ensures that the outcomes of the privacy-preserving coordination mechanism are close-to-optimality for each agent. Experimental results on several gas and electricity market benchmarks based on a real case study demonstrate the effectiveness of the proposed approach. A full version of this paper [Fioretto et al., 2020b] contains complete proofs and additional discussion on the motivating application.
UR - http://www.scopus.com/inward/record.url?scp=85097351562&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097351562&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85097351562
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 3480
EP - 3486
BT - Proceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
A2 - Bessiere, Christian
PB - International Joint Conferences on Artificial Intelligence
T2 - 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
Y2 - 1 January 2021
ER -