Abstract
Detectors based on Chemical Vapor Deposition (CVD) diamond have been used extensively and successfully in beam conditions/beam loss monitors as the innermost detectors in the highest radiation areas of Large Hadron Collider (LHC) experiments. The startup of the LHC in 2015 brought a new milestone where the first polycrystalline CVD (pCVD) diamond pixel modules were installed in an LHC experiment and successfully began operation. The RD42 collaboration at CERN is leading the effort to develop polycrystalline CVD diamond as a material for tracking detectors operating in extreme radiation environments. The status of the RD42 project with emphasis on recent beam test results is presented.
Original language | English (US) |
---|---|
Pages (from-to) | 297-300 |
Number of pages | 4 |
Journal | Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
Volume | 924 |
DOIs | |
State | Published - Apr 21 2019 |
Keywords
- 3D diamond detectors
- Chemical vapor deposition
- Diamond detectors
- Radiation tolerant detectors
- pCVD diamond
ASJC Scopus subject areas
- Nuclear and High Energy Physics
- Instrumentation
Access to Document
Fingerprint Dive into the research topics of 'Diamond detector technology, status and perspectives'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Diamond detector technology, status and perspectives. / Kagan, H.; Alexopoulos, A.; Artuso, M.; Bachmair, F.; Bäni, L.; Bartosik, M.; Beacham, J.; Beck, H.; Bellini, V.; Belyaev, V.; Bentele, B.; Bergonzo, P.; Bes, A.; Brom, J. M.; Bruzzi, M.; Chiodini, G.; Chren, D.; Cindro, V.; Claus, G.; Collot, J.; Cumalat, J.; Dabrowski, A.; D'Alessandro, R.; Dauvergne, D.; de Boer, W.; Dick, S.; Dorfer, C.; Dunser, M.; Eremin, V.; Forcolin, G.; Forneris, J.; Gallin-Martel, L.; Gallin-Martel, M. L.; Gan, K. K.; Gastal, M.; Giroletti, C.; Goffe, M.; Goldstein, J.; Golubev, A.; Gorišek, A.; Grigoriev, E.; Grosse-Knetter, J.; Grummer, A.; Gui, B.; Guthoff, M.; Haughton, I.; Hiti, B.; Hits, D.; Hoeferkamp, M.; Hofmann, T.; Hosslet, J.; Hostachy, J. Y.; Hügging, F.; Hutton, C.; Janssen, J.; Kanxheri, K.; Kasieczka, G.; Kass, R.; Kassel, F.; Kis, M.; Kramberger, G.; Kuleshov, S.; Lacoste, A.; Lagomarsino, S.; Giudice, A. Lo; Lukosi, E.; Maazouzi, C.; Mandic, I.; Mathieu, C.; Menichelli, M.; Mikuž, M.; Morozzi, A.; Moss, J.; Mountain, R.; Murphy, S.; Muškinja, M.; Oh, A.; Olivero, P.; Passeri, D.; Pernegger, H.; Perrino, R.; Picollo, F.; Pomorski, M.; Potenza, R.; Quadt, A.; Re, A.; Reichmann, M.; Riley, G.; Roe, S.; Sanz, D.; Scaringella, M.; Schaefer, D.; Schmidt, C. J.; Smith, D. S.; Schnetzer, S.; Sciortino, S.; Scorzoni, A.; Seidel, S.; Servoli, L.; Sopko, B.; Sopko, V.; Spagnolo, S.; Spanier, S.; Stenson, K.; Stone, R.; Sutera, C.; Taylor, A.; Tannenwald, B.; Traeger, M.; Tromson, D.; Trischuk, W.; Tuve, C.; Velthuis, J.; Venturi, N.; Vittone, E.; Wagner, S.; Wallny, R.; Wang, J. C.; Weingarten, J.; Weiss, C.; Wengler, T.; Wermes, N.; Yamouni, M.; Zavrtanik, M.
In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 924, 21.04.2019, p. 297-300.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Diamond detector technology, status and perspectives
AU - Kagan, H.
AU - Alexopoulos, A.
AU - Artuso, M.
AU - Bachmair, F.
AU - Bäni, L.
AU - Bartosik, M.
AU - Beacham, J.
AU - Beck, H.
AU - Bellini, V.
AU - Belyaev, V.
AU - Bentele, B.
AU - Bergonzo, P.
AU - Bes, A.
AU - Brom, J. M.
AU - Bruzzi, M.
AU - Chiodini, G.
AU - Chren, D.
AU - Cindro, V.
AU - Claus, G.
AU - Collot, J.
AU - Cumalat, J.
AU - Dabrowski, A.
AU - D'Alessandro, R.
AU - Dauvergne, D.
AU - de Boer, W.
AU - Dick, S.
AU - Dorfer, C.
AU - Dunser, M.
AU - Eremin, V.
AU - Forcolin, G.
AU - Forneris, J.
AU - Gallin-Martel, L.
AU - Gallin-Martel, M. L.
AU - Gan, K. K.
AU - Gastal, M.
AU - Giroletti, C.
AU - Goffe, M.
AU - Goldstein, J.
AU - Golubev, A.
AU - Gorišek, A.
AU - Grigoriev, E.
AU - Grosse-Knetter, J.
AU - Grummer, A.
AU - Gui, B.
AU - Guthoff, M.
AU - Haughton, I.
AU - Hiti, B.
AU - Hits, D.
AU - Hoeferkamp, M.
AU - Hofmann, T.
AU - Hosslet, J.
AU - Hostachy, J. Y.
AU - Hügging, F.
AU - Hutton, C.
AU - Janssen, J.
AU - Kanxheri, K.
AU - Kasieczka, G.
AU - Kass, R.
AU - Kassel, F.
AU - Kis, M.
AU - Kramberger, G.
AU - Kuleshov, S.
AU - Lacoste, A.
AU - Lagomarsino, S.
AU - Giudice, A. Lo
AU - Lukosi, E.
AU - Maazouzi, C.
AU - Mandic, I.
AU - Mathieu, C.
AU - Menichelli, M.
AU - Mikuž, M.
AU - Morozzi, A.
AU - Moss, J.
AU - Mountain, R.
AU - Murphy, S.
AU - Muškinja, M.
AU - Oh, A.
AU - Olivero, P.
AU - Passeri, D.
AU - Pernegger, H.
AU - Perrino, R.
AU - Picollo, F.
AU - Pomorski, M.
AU - Potenza, R.
AU - Quadt, A.
AU - Re, A.
AU - Reichmann, M.
AU - Riley, G.
AU - Roe, S.
AU - Sanz, D.
AU - Scaringella, M.
AU - Schaefer, D.
AU - Schmidt, C. J.
AU - Smith, D. S.
AU - Schnetzer, S.
AU - Sciortino, S.
AU - Scorzoni, A.
AU - Seidel, S.
AU - Servoli, L.
AU - Sopko, B.
AU - Sopko, V.
AU - Spagnolo, S.
AU - Spanier, S.
AU - Stenson, K.
AU - Stone, R.
AU - Sutera, C.
AU - Taylor, A.
AU - Tannenwald, B.
AU - Traeger, M.
AU - Tromson, D.
AU - Trischuk, W.
AU - Tuve, C.
AU - Velthuis, J.
AU - Venturi, N.
AU - Vittone, E.
AU - Wagner, S.
AU - Wallny, R.
AU - Wang, J. C.
AU - Weingarten, J.
AU - Weiss, C.
AU - Wengler, T.
AU - Wermes, N.
AU - Yamouni, M.
AU - Zavrtanik, M.
N1 - Funding Information: The RD42 Collaboration gratefully acknowledges the staff at CERN for test beam time and their help in setting up the beam conditions. We would especially like to thank Henric Wilkens, the test beam coordinator, for his assistance in making our tests a success. We also thank the beam line staff at the PSI High Intensity Proton Accelerator especially Konrad Deiters, Manuel Schwarz and Davide Reggiani for their assistance in carrying out the diamond detector tests. We extend our gratitude to Prof. Lin Li and David Whitehead of the University of Manchester Laser Processing Center for their assistance in the production of 3D diamond devices. The research leading to these results received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 654168 . This work was also partially supported by the Swiss National Science Foundation grant # 20FL20_154216 , ETH grant 51 15-1 , Royal Society Grant UF120106 and the U.S. Department of Energy through grant DE-SC0010061 . Funding Information: The RD42 Collaboration gratefully acknowledges the staff at CERN for test beam time and their help in setting up the beam conditions. We would especially like to thank Henric Wilkens, the test beam coordinator, for his assistance in making our tests a success. We also thank the beam line staff at the PSI High Intensity Proton Accelerator especially Konrad Deiters, Manuel Schwarz and Davide Reggiani for their assistance in carrying out the diamond detector tests. We extend our gratitude to Prof. Lin Li and David Whitehead of the University of Manchester Laser Processing Center for their assistance in the production of 3D diamond devices. The research leading to these results received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 654168. This work was also partially supported by the Swiss National Science Foundation grant # 20FL20_154216, ETH grant 51 15-1, Royal Society Grant UF120106 and the U.S. Department of Energy through grant DE-SC0010061.
PY - 2019/4/21
Y1 - 2019/4/21
N2 - Detectors based on Chemical Vapor Deposition (CVD) diamond have been used extensively and successfully in beam conditions/beam loss monitors as the innermost detectors in the highest radiation areas of Large Hadron Collider (LHC) experiments. The startup of the LHC in 2015 brought a new milestone where the first polycrystalline CVD (pCVD) diamond pixel modules were installed in an LHC experiment and successfully began operation. The RD42 collaboration at CERN is leading the effort to develop polycrystalline CVD diamond as a material for tracking detectors operating in extreme radiation environments. The status of the RD42 project with emphasis on recent beam test results is presented.
AB - Detectors based on Chemical Vapor Deposition (CVD) diamond have been used extensively and successfully in beam conditions/beam loss monitors as the innermost detectors in the highest radiation areas of Large Hadron Collider (LHC) experiments. The startup of the LHC in 2015 brought a new milestone where the first polycrystalline CVD (pCVD) diamond pixel modules were installed in an LHC experiment and successfully began operation. The RD42 collaboration at CERN is leading the effort to develop polycrystalline CVD diamond as a material for tracking detectors operating in extreme radiation environments. The status of the RD42 project with emphasis on recent beam test results is presented.
KW - 3D diamond detectors
KW - Chemical vapor deposition
KW - Diamond detectors
KW - Radiation tolerant detectors
KW - pCVD diamond
UR - http://www.scopus.com/inward/record.url?scp=85048418916&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048418916&partnerID=8YFLogxK
U2 - 10.1016/j.nima.2018.06.009
DO - 10.1016/j.nima.2018.06.009
M3 - Article
AN - SCOPUS:85048418916
VL - 924
SP - 297
EP - 300
JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
SN - 0168-9002
ER -