Abstract
In the standard model, the charged current of the weak interaction is governed by a unitary quark mixing matrix that also leads to CP violation. Measurement of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements is essential to searches for new physics, either through the structure of the CKM matrix, or a departure from unitarity. We determine the CKM matrix element |Vcb| using a sample of 3×106 BB̄ events in the CLEO detector at the Cornell Electron Storage Ring. We determine the yield of reconstructed B̄0 →D*+ ℓν̄ and B -D*0ℓν̄ decays as a function of w, the boost of the D* in the B rest frame, and from this we obtain the differential decay rate dΓ/dw. By extrapolating dΓ/dw to w = 1, the kinematic end point at which the D* is at rest relative to the B, we extract the product |Vcb|ℱ(1), where ℱ(1) is the form factor at w=1. We find |Vcb|ℱ(1) = 0.0431±0.0013(stat) ±0.0018(syst). We combine |Vcb|ℱ(1) with theoretical results for ℱ(1) to determine |Vcb| = 0.0469±0.0014(stat) ±0.0020(syst)±0.0018(theor). We also integrate the differential decay rate over w to obtain B(B̄0→D *+ℓν̄ = (609±0.19±0.40)% and B(B -→D*0ℓν̄) = (6.50±0. 20±0.43)%.
Original language | English (US) |
---|---|
Article number | 032001 |
Journal | Physical Review D |
Volume | 67 |
Issue number | 3 |
DOIs | |
State | Published - 2003 |
ASJC Scopus subject areas
- Nuclear and High Energy Physics