Detection of hearing loss using 2f2-f1 and 2f1-f2 distortion-product otoacoustic emissions

Tracy S. Fitzgerald, Beth A Prieve

Research output: Contribution to journalArticle

11 Scopus citations

Abstract

Although many distortion-product otoacoustic emissions (DPOAEs) may be measured in the ear canal in response to 2 pure tone stimuli, the majority of clinical studies have focused exclusively on the DPOAE at the frequency 2f1-f2. This study investigated another DPOAE, 2f2-f1, in an attempt to determine the following: (a) the optimal stimulus parameters for its clinical measurement and (b) its utility in differentiating between normal-hearing and hearing-impaired ears at low-to-mid frequencies (≤2000 Hz) when measured either alone or in conjunction with the 2f1-f2 DPOAE. Two experiments were conducted. In Experiment 1, the effects of primary level, level separation, and frequency separation (f2/f1) on 2f2-f1 DPOAE level were evaluated in normal-hearing ears for low-to-mid f2 frequencies (700-2000 Hz). Moderately high-level primaries (60-70 dB SPL) presented at equal levels or with f2 slightly higher than f1 produced the highest 2f2-f1 DPOAE levels. When the f2/f1 ratio that produced the highest 2f2-f1 DPOAE levels was examined across participants, the mean optimal f2/f1 ratio across f2 frequencies and primary level separations was 1.08. In Experiment 2, the accuracy with which DPOAE level or signal-to-noise ratio identified hearing status at the f2 frequency as normal or impaired was evaluated using clinical decision analysis. The 2f2-f1 and 2f1-f2 DPOAEs were measured from both normal-hearing and hearing-impaired ears using 2 sets of stimulus parameters: (a) the traditional parameters for measuring the 2f1-f2 DPOAE (f2/f1 = 1.22; L1, L2 = 05, 55 dB SPL) and (b) the new parameters that were deemed optimal for the 2f2-f1 DPOAE in Experiment 1 (f2/f1 = 1.073, L1 and L2 = 65 dB SPL). Identification of hearing status using 2f2-f1 DPOAE level and signal-to-noise ratio was more accurate when the new stimulus parameters were used compared with the results achieved when the 2f2-f1 DPOAE was recorded using the traditional parameters. However, identification of hearing status was less accurate for the 2f2-f1 DPOAE measured using the new parameters than for the 2f1-f2 DPOAE measured using the traditional parameters. No statistically significant improvements in test performance were achieved when the information from the 2 DPOAEs was combined, either by summing the DPOAE levels or by using logistic regression analysis.

Original languageEnglish (US)
Pages (from-to)1165-1186
Number of pages22
JournalJournal of Speech, Language, and Hearing Research
Volume48
Issue number5
DOIs
StatePublished - Oct 2005

    Fingerprint

Keywords

  • Distortion-product otoacoustic emissions
  • Hearing assessment
  • Hearing loss

ASJC Scopus subject areas

  • Rehabilitation
  • Linguistics and Language
  • Health Professions(all)

Cite this