TY - GEN
T1 - Detecting causal language use in science findings
AU - Yu, Bei
AU - Li, Yingya
AU - Wang, Jun
N1 - Publisher Copyright:
© 2019 Association for Computational Linguistics
PY - 2019
Y1 - 2019
N2 - Causal interpretation of correlational findings from observational studies has been a major type of misinformation in science communication. Prior studies on identifying inappropriate use of causal language relied on manual content analysis, which is not scalable for examining a large volume of science publications. In this study, we first annotated a corpus of over 3,000 PubMed research conclusion sentences, then developed a BERT-based prediction model that classifies conclusion sentences into “no relationship”, “correlational”, “conditional causal”, and “direct causal” categories, achieving an accuracy of 0.90 and a macroF1 of 0.88. We then applied the prediction model to measure the causal language use in the research conclusions of about 38,000 observational studies in PubMed. The prediction result shows that 21.7% studies used direct causal language exclusively in their conclusions, and 32.4% used some direct causal language. We also found that the ratio of causal language use differs among authors from different countries, challenging the notion of a shared consensus on causal language use in the global science community. Our prediction model could also be used to help identify the inappropriate use of causal language in science publications.
AB - Causal interpretation of correlational findings from observational studies has been a major type of misinformation in science communication. Prior studies on identifying inappropriate use of causal language relied on manual content analysis, which is not scalable for examining a large volume of science publications. In this study, we first annotated a corpus of over 3,000 PubMed research conclusion sentences, then developed a BERT-based prediction model that classifies conclusion sentences into “no relationship”, “correlational”, “conditional causal”, and “direct causal” categories, achieving an accuracy of 0.90 and a macroF1 of 0.88. We then applied the prediction model to measure the causal language use in the research conclusions of about 38,000 observational studies in PubMed. The prediction result shows that 21.7% studies used direct causal language exclusively in their conclusions, and 32.4% used some direct causal language. We also found that the ratio of causal language use differs among authors from different countries, challenging the notion of a shared consensus on causal language use in the global science community. Our prediction model could also be used to help identify the inappropriate use of causal language in science publications.
UR - http://www.scopus.com/inward/record.url?scp=85084305854&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084305854&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85084305854
T3 - EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
SP - 4664
EP - 4674
BT - EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
PB - Association for Computational Linguistics
T2 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019
Y2 - 3 November 2019 through 7 November 2019
ER -