@article{bc2e483426774acabefb3610adc59b2b,
title = "Detectability of subsolar mass neutron stars through a template bank search",
abstract = "We study the detectability of gravitational-wave signals from subsolar-mass binary neutron star systems by the current generation of ground-based gravitational-wave detectors. We find that finite size effects from large tidal deformabilities of the neutron stars and lower merger frequencies can significantly impact the sensitivity of the detectors to these sources. By simulating a matched-filter based search using injected binary neutron star signals with tidal deformabilities derived from physically motivated equations of state, we calculate the reduction in sensitivity of the detectors. We conclude that the loss in sensitive volume can be as high as 78.4% for an equal mass binary system of chirp mass 0.17M⊙, in a search conducted using binary black hole template banks. We use this loss in sensitive volume, in combination with the results from the search for subsolar-mass binaries conducted on data collected by the LIGO-Virgo observatories during their first three observing runs, to obtain a conservative upper limit on the merger rate of subsolar-mass binary neutron stars. Since the discovery of a low-mass neutron star would provide new insight into formation mechanisms of neutron stars and further constrain the equation of state of dense nuclear matter, our result merits a dedicated search for subsolar-mass binary neutron star signals.",
author = "Ananya Bandopadhyay and Brendan Reed and Surendra Padamata and Erick Leon and Horowitz, {C. J.} and Brown, {Duncan A.} and David Radice and Fattoyev, {F. J.} and J. Piekarewicz",
note = "Funding Information: The authors thank Alexander Nitz for helpful discussion regarding subsolar-mass binary black hole searches in LIGO and Virgo and making the data required to make Fig. available. D. R. acknowledges funding from the U.S. Department of Energy, Office of Science, Division of Nuclear Physics under Award No. DE-SC0021177 and from the National Science Foundation under Grants No. PHY-2011725, No. PHY-2020275, No. PHY-2116686, and No. AST-2108467. D. A. B. and A. B. acknowledge funding from the National Science Foundation under Grant No. PHY-2011655. DAB also thanks National Science Foundation Grant No. PHY-2116686. E. L. acknowledges funding from the National Science Foundation under Grant No. AST-1559694. J. P. acknowledges funding from the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award No. DE-FG02-92ER40750. C. J. H. and B. R. acknowledge funding from the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award No. DE-FG02-87ER40365. D. A. B. and C. J. H. thank the Kavli Institute for Theoretical Physics (KITP) for hospitality during the initial development of this work. KITP is supported in part by the National Science Foundation under Grant No. NSF PHY-1748958. This research was supported through computational resources provided by Syracuse University. D. R. acknowledges support as a Alfred P. Sloan Fellow. Publisher Copyright: {\textcopyright} 2023 American Physical Society.",
year = "2023",
month = may,
day = "15",
doi = "10.1103/PhysRevD.107.103012",
language = "English (US)",
volume = "107",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Physical Society",
number = "10",
}