Designing responsive buckled surfaces by halftone gel lithography

Jungwook Kim, James A. Hanna, Myunghwan Byun, Christian D. Santangelo, Ryan C. Hayward

Research output: Contribution to journalArticle

473 Scopus citations

Abstract

Self-actuating materials capable of transforming between three-dimensional shapes have applications in areas as diverse as biomedicine, robotics, and tunable micro-optics. We introduce a method of photopatterning polymer films that yields temperature-responsive gel sheets that can transform between a flat state and a prescribed three-dimensional shape. Our approach is based on poly(N-isopropylacrylamide) copolymers containing pendent benzophenone units that allow cross-linking to be tuned by irradiation dose. We describe a simple method of halftone gel lithography using only two photomasks, wherein highly cross-linked dots embedded in a lightly cross-linked matrix provide access to nearly continuous, and fully two-dimensional, patterns of swelling. This method is used to fabricate surfaces with constant Gaussian curvature (spherical caps, saddles, and cones) or zero mean curvature (Enneper's surfaces), as well as more complex and nearly closed shapes.

Original languageEnglish (US)
Pages (from-to)1201-1205
Number of pages5
JournalScience
Volume335
Issue number6073
DOIs
StatePublished - Mar 9 2012

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Designing responsive buckled surfaces by halftone gel lithography'. Together they form a unique fingerprint.

  • Cite this