TY - JOUR
T1 - Density functional theory treatment of electron correlation in the nuclear-electronic orbital approach
AU - Pak, Michael V.
AU - Chakraborty, Arindam
AU - Hammes-Schiffer, Sharon
PY - 2007/5/24
Y1 - 2007/5/24
N2 - This paper presents the nuclear-electronic orbital density functional theory [NEO-DFT(ee)] method for including electron-electron correlation and nuclear quantum effects self-consistently in quantum chemical calculations. The NEO approach is designed to treat a relatively small number of nuclei quantum mechanically, while the remaining nuclei are treated classically. In the NEO-DFT(ee) approach, the correlated electron density is used to obtain the nuclear molecular orbitals, and the resulting nuclear density is used to obtain the correlated electron density during an iterative procedure that continues until convergence of both the nuclear and electronic densities. This approach includes feedback between the correlated electron density and the nuclear wavefunction. The application of this approach to bihalides and acetylene indicates that the nuclear quantum effects do not significantly impact the electron correlation energy, but the quantum nuclear energy is enhanced in the NEO-DFT(ee) B3LYP method. The excellent agreement of the NEO-DFT(ee)-optimized bihalide structures with the vibrationally averaged geometries from grid-based quantum dynamical methods provides validation for the NEO-DFT(ee) approach. Electron-proton correlation could be included by the development of an electron-nucleus correlation functional. Alternatively, explicit electron-proton correlation could be included directly into the NEO self-consistent-field framework with Gaussian-type geminal functions.
AB - This paper presents the nuclear-electronic orbital density functional theory [NEO-DFT(ee)] method for including electron-electron correlation and nuclear quantum effects self-consistently in quantum chemical calculations. The NEO approach is designed to treat a relatively small number of nuclei quantum mechanically, while the remaining nuclei are treated classically. In the NEO-DFT(ee) approach, the correlated electron density is used to obtain the nuclear molecular orbitals, and the resulting nuclear density is used to obtain the correlated electron density during an iterative procedure that continues until convergence of both the nuclear and electronic densities. This approach includes feedback between the correlated electron density and the nuclear wavefunction. The application of this approach to bihalides and acetylene indicates that the nuclear quantum effects do not significantly impact the electron correlation energy, but the quantum nuclear energy is enhanced in the NEO-DFT(ee) B3LYP method. The excellent agreement of the NEO-DFT(ee)-optimized bihalide structures with the vibrationally averaged geometries from grid-based quantum dynamical methods provides validation for the NEO-DFT(ee) approach. Electron-proton correlation could be included by the development of an electron-nucleus correlation functional. Alternatively, explicit electron-proton correlation could be included directly into the NEO self-consistent-field framework with Gaussian-type geminal functions.
UR - http://www.scopus.com/inward/record.url?scp=34250375642&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34250375642&partnerID=8YFLogxK
U2 - 10.1021/jp0704463
DO - 10.1021/jp0704463
M3 - Article
C2 - 17441701
AN - SCOPUS:34250375642
SN - 1089-5639
VL - 111
SP - 4522
EP - 4526
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 20
ER -