TY - JOUR

T1 - Deformations of Bi-conformal Energy and a New Characterization of Quasiconformality

AU - Iwaniec, Tadeusz

AU - Onninen, Jani

AU - Zhu, Zheng

N1 - Publisher Copyright:
© 2020, Springer-Verlag GmbH Germany, part of Springer Nature.

PY - 2020/6/1

Y1 - 2020/6/1

N2 - The concept of hyperelastic deformations of bi-conformal energy is developed as an extension of quasiconformality. These deformations are homeomorphisms h:X→ontoY between domains X,Y⊂Rn of the Sobolev class Wloc1,n(X,Y) whose inverse f==defh-1:Y→ontoX also belongs to Wloc1,n(Y,X). Thus the paper opens new topics in Geometric Function Theory (GFT) with connections to mathematical models of Nonlinear Elasticity (NE). In seeking differences and similarities with quasiconformal mappings we examine closely the modulus of continuity of deformations of bi-conformal energy. This leads us to a new characterization of quasiconformality. Specifically, it is observed that quasiconformal mappings behave locally at every point like radial stretchings; if a quasiconformal map h admits a function ϕ as its optimal modulus of continuity at a point x∘, then f=h-1 admits the inverse function ψ=ϕ-1 as its modulus of continuity at y∘=h(x∘). That is to say, a poor (possibly harmful) continuity of h at a given point x∘ is always compensated by a better continuity of f at y∘, and vice versa. Such a gain/loss property, seemingly overlooked by many authors, is actually characteristic of quasiconformal mappings. It turns out that the elastic deformations of bi-conformal energy are very different in this respect. Unexpectedly, such a map may have the same optimal modulus of continuity as its inverse deformation. In line with Hooke’s Law, when trying to restore the original shape of the body (by the inverse transformation), the modulus of continuity may neither be improved nor become worse. However, examples to confirm this phenomenon are far from being obvious; indeed, elaborate computations are on the way. We eventually hope that our examples will gain an interest in the materials science, particularly in mathematical models of hyperelasticity.

AB - The concept of hyperelastic deformations of bi-conformal energy is developed as an extension of quasiconformality. These deformations are homeomorphisms h:X→ontoY between domains X,Y⊂Rn of the Sobolev class Wloc1,n(X,Y) whose inverse f==defh-1:Y→ontoX also belongs to Wloc1,n(Y,X). Thus the paper opens new topics in Geometric Function Theory (GFT) with connections to mathematical models of Nonlinear Elasticity (NE). In seeking differences and similarities with quasiconformal mappings we examine closely the modulus of continuity of deformations of bi-conformal energy. This leads us to a new characterization of quasiconformality. Specifically, it is observed that quasiconformal mappings behave locally at every point like radial stretchings; if a quasiconformal map h admits a function ϕ as its optimal modulus of continuity at a point x∘, then f=h-1 admits the inverse function ψ=ϕ-1 as its modulus of continuity at y∘=h(x∘). That is to say, a poor (possibly harmful) continuity of h at a given point x∘ is always compensated by a better continuity of f at y∘, and vice versa. Such a gain/loss property, seemingly overlooked by many authors, is actually characteristic of quasiconformal mappings. It turns out that the elastic deformations of bi-conformal energy are very different in this respect. Unexpectedly, such a map may have the same optimal modulus of continuity as its inverse deformation. In line with Hooke’s Law, when trying to restore the original shape of the body (by the inverse transformation), the modulus of continuity may neither be improved nor become worse. However, examples to confirm this phenomenon are far from being obvious; indeed, elaborate computations are on the way. We eventually hope that our examples will gain an interest in the materials science, particularly in mathematical models of hyperelasticity.

UR - http://www.scopus.com/inward/record.url?scp=85081580464&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85081580464&partnerID=8YFLogxK

U2 - 10.1007/s00205-020-01502-w

DO - 10.1007/s00205-020-01502-w

M3 - Article

AN - SCOPUS:85081580464

SN - 0003-9527

VL - 236

SP - 1709

EP - 1737

JO - Archive for Rational Mechanics and Analysis

JF - Archive for Rational Mechanics and Analysis

IS - 3

ER -