TY - JOUR
T1 - Decreased atmospheric nitrogen deposition in eastern North America
T2 - Predicted responses of forest ecosystems
AU - Gilliam, Frank S.
AU - Burns, Douglas A.
AU - Driscoll, Charles T.
AU - Frey, Serita D.
AU - Lovett, Gary M.
AU - Watmough, Shaun A.
N1 - Publisher Copyright:
© 2018 Elsevier Ltd
PY - 2019/1
Y1 - 2019/1
N2 - Historical increases in emissions and atmospheric deposition of oxidized and reduced nitrogen (N) provided the impetus for extensive, global-scale research investigating the effects of excess N in terrestrial and aquatic ecosystems, with several regions within the Eastern Deciduous Forest of the United States found to be susceptible to negative effects of excess N. The Clean Air Act and associated rules have led to decreases in emissions and deposition of oxidized N, especially in eastern U.S., representing a research challenge and opportunity for ecosystem ecologists and biogeochemists. The purpose of this paper is to predict changes in the structure and function of North American forest ecosystems in a future of decreased N deposition. Hysteresis is a property of a system wherein output is not a strict function of corresponding input, incorporating lag, delay, or history dependence, particularly when the response to decreasing input is different from the response to increasing input. We suggest a conceptual hysteretic model predicting varying lag times in recovery of soil acidification, plant biodiversity, soil microbial communities, forest carbon (C) and N cycling, and surface water chemistry toward pre-N impact conditions. Nearly all of these can potentially respond strongly to reductions in N deposition. Most responses are expected to show some degree of hysteresis, with the greatest delays in response occurring in processes most tightly linked to “slow pools” of N in wood and soil organic matter. Because experimental studies of declines in N loads in forests of North America are lacking and because of the expected hysteresis, it is difficult to generalize from experimental results to patterns expected from declining N deposition. These will likely be long-term phenomena, difficult to distinguish from other, concurrent environmental changes, including elevated atmospheric CO2, climate change, reductions in acidity, invasions of new species, and long-term vegetation responses to past disturbance. Nitrogen (N)-impacted forest ecosystems are predicted to exhibit a time lag of varying duration toward recovery initiated by current declines in atmospheric N deposition.
AB - Historical increases in emissions and atmospheric deposition of oxidized and reduced nitrogen (N) provided the impetus for extensive, global-scale research investigating the effects of excess N in terrestrial and aquatic ecosystems, with several regions within the Eastern Deciduous Forest of the United States found to be susceptible to negative effects of excess N. The Clean Air Act and associated rules have led to decreases in emissions and deposition of oxidized N, especially in eastern U.S., representing a research challenge and opportunity for ecosystem ecologists and biogeochemists. The purpose of this paper is to predict changes in the structure and function of North American forest ecosystems in a future of decreased N deposition. Hysteresis is a property of a system wherein output is not a strict function of corresponding input, incorporating lag, delay, or history dependence, particularly when the response to decreasing input is different from the response to increasing input. We suggest a conceptual hysteretic model predicting varying lag times in recovery of soil acidification, plant biodiversity, soil microbial communities, forest carbon (C) and N cycling, and surface water chemistry toward pre-N impact conditions. Nearly all of these can potentially respond strongly to reductions in N deposition. Most responses are expected to show some degree of hysteresis, with the greatest delays in response occurring in processes most tightly linked to “slow pools” of N in wood and soil organic matter. Because experimental studies of declines in N loads in forests of North America are lacking and because of the expected hysteresis, it is difficult to generalize from experimental results to patterns expected from declining N deposition. These will likely be long-term phenomena, difficult to distinguish from other, concurrent environmental changes, including elevated atmospheric CO2, climate change, reductions in acidity, invasions of new species, and long-term vegetation responses to past disturbance. Nitrogen (N)-impacted forest ecosystems are predicted to exhibit a time lag of varying duration toward recovery initiated by current declines in atmospheric N deposition.
KW - Clean Air Act
KW - Decreased nitrogen deposition
KW - Eastern deciduous forest
KW - Forest ecosystems
KW - Nitrogen biogeochemistry
UR - http://www.scopus.com/inward/record.url?scp=85055975326&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85055975326&partnerID=8YFLogxK
U2 - 10.1016/j.envpol.2018.09.135
DO - 10.1016/j.envpol.2018.09.135
M3 - Review article
C2 - 30384062
AN - SCOPUS:85055975326
SN - 0269-7491
VL - 244
SP - 560
EP - 574
JO - Environmental Pollution
JF - Environmental Pollution
ER -