Crustal accretion of thick mafic crust in Iceland: Implications for volcanic rifted margins

Research output: Research - peer-reviewArticle

  • 1 Citations

Abstract

Rifting near hotspots results in mantle melting to create thick mafic igneous crust at volcanic rifted margins (VRMs). This mafic crust is transitional between rifted continental crust with mafic intrusions landward and oceanic crust into which it grades seaward. Seismic velocities, crustal drilling, and exhumed margins show that the upper crust in these areas is composed of basaltic lava erupted in subaerial to submarine conditions intruded by downward increasing proportions of dikes and sparse gabbroic intrusions. The lower crust of these regions is not exposed but is inferred from seismic velocities (Vp > 6.5 km/sec) and petrological constraints to be gabbroic to ultramafic in composition. Limited access to crustal sections generated along VRMs have raised questions regarding the composition and structure of this transitional crust and how it evolves during the early stages of rifting and subsequent seafloor spreading. Active processes in Iceland provide a glimpse of subaerial spreading with the creation of a thick (40–25 km) mafic igneous crust that may be analogous to the transitional crust of VRMs. Segmented rift zones that propagate away from the Iceland hotspot, migrating transform fault zones, and rift-parallel strike-slip faults create a complex plate boundary zone in the upper, brittle crust. These structures may be decoupled from underlying lower crustal gabbroic rocks that are capable of along-axis flow that smooths-out crustal thickness variations. Similar processes may be characteristic of the early history of VRMs and volcanic hotspot ridges related to rifting and seafloor spreading proximal to hotspots.

LanguageEnglish (US)
Pages1205-1215
Number of pages11
JournalCanadian Journal of Earth Sciences
Volume53
Issue number11
DOIs
StatePublished - 2016

Fingerprint

accretion
crust
hot spot
rifting
seafloor spreading
seismic velocity
transform fault
crustal thickness
rift zone
plate boundary
strike-slip fault
upper crust
lava
oceanic crust
lower crust
continental crust
dike
fault zone
melting
drilling

ASJC Scopus subject areas

  • Earth and Planetary Sciences(all)

Cite this

@article{9c9d1089373b4e75b5c4c99abe33abf6,
title = "Crustal accretion of thick mafic crust in Iceland: Implications for volcanic rifted margins",
abstract = "Rifting near hotspots results in mantle melting to create thick mafic igneous crust at volcanic rifted margins (VRMs). This mafic crust is transitional between rifted continental crust with mafic intrusions landward and oceanic crust into which it grades seaward. Seismic velocities, crustal drilling, and exhumed margins show that the upper crust in these areas is composed of basaltic lava erupted in subaerial to submarine conditions intruded by downward increasing proportions of dikes and sparse gabbroic intrusions. The lower crust of these regions is not exposed but is inferred from seismic velocities (Vp > 6.5 km/sec) and petrological constraints to be gabbroic to ultramafic in composition. Limited access to crustal sections generated along VRMs have raised questions regarding the composition and structure of this transitional crust and how it evolves during the early stages of rifting and subsequent seafloor spreading. Active processes in Iceland provide a glimpse of subaerial spreading with the creation of a thick (40–25 km) mafic igneous crust that may be analogous to the transitional crust of VRMs. Segmented rift zones that propagate away from the Iceland hotspot, migrating transform fault zones, and rift-parallel strike-slip faults create a complex plate boundary zone in the upper, brittle crust. These structures may be decoupled from underlying lower crustal gabbroic rocks that are capable of along-axis flow that smooths-out crustal thickness variations. Similar processes may be characteristic of the early history of VRMs and volcanic hotspot ridges related to rifting and seafloor spreading proximal to hotspots.",
author = "Karson, {Jeffrey A.}",
year = "2016",
doi = "10.1139/cjes-2016-0039",
volume = "53",
pages = "1205--1215",
journal = "Canadian Journal of Earth Sciences",
issn = "0008-4077",
publisher = "National Research Council of Canada",
number = "11",

}

TY - JOUR

T1 - Crustal accretion of thick mafic crust in Iceland

T2 - Canadian Journal of Earth Sciences

AU - Karson,Jeffrey A.

PY - 2016

Y1 - 2016

N2 - Rifting near hotspots results in mantle melting to create thick mafic igneous crust at volcanic rifted margins (VRMs). This mafic crust is transitional between rifted continental crust with mafic intrusions landward and oceanic crust into which it grades seaward. Seismic velocities, crustal drilling, and exhumed margins show that the upper crust in these areas is composed of basaltic lava erupted in subaerial to submarine conditions intruded by downward increasing proportions of dikes and sparse gabbroic intrusions. The lower crust of these regions is not exposed but is inferred from seismic velocities (Vp > 6.5 km/sec) and petrological constraints to be gabbroic to ultramafic in composition. Limited access to crustal sections generated along VRMs have raised questions regarding the composition and structure of this transitional crust and how it evolves during the early stages of rifting and subsequent seafloor spreading. Active processes in Iceland provide a glimpse of subaerial spreading with the creation of a thick (40–25 km) mafic igneous crust that may be analogous to the transitional crust of VRMs. Segmented rift zones that propagate away from the Iceland hotspot, migrating transform fault zones, and rift-parallel strike-slip faults create a complex plate boundary zone in the upper, brittle crust. These structures may be decoupled from underlying lower crustal gabbroic rocks that are capable of along-axis flow that smooths-out crustal thickness variations. Similar processes may be characteristic of the early history of VRMs and volcanic hotspot ridges related to rifting and seafloor spreading proximal to hotspots.

AB - Rifting near hotspots results in mantle melting to create thick mafic igneous crust at volcanic rifted margins (VRMs). This mafic crust is transitional between rifted continental crust with mafic intrusions landward and oceanic crust into which it grades seaward. Seismic velocities, crustal drilling, and exhumed margins show that the upper crust in these areas is composed of basaltic lava erupted in subaerial to submarine conditions intruded by downward increasing proportions of dikes and sparse gabbroic intrusions. The lower crust of these regions is not exposed but is inferred from seismic velocities (Vp > 6.5 km/sec) and petrological constraints to be gabbroic to ultramafic in composition. Limited access to crustal sections generated along VRMs have raised questions regarding the composition and structure of this transitional crust and how it evolves during the early stages of rifting and subsequent seafloor spreading. Active processes in Iceland provide a glimpse of subaerial spreading with the creation of a thick (40–25 km) mafic igneous crust that may be analogous to the transitional crust of VRMs. Segmented rift zones that propagate away from the Iceland hotspot, migrating transform fault zones, and rift-parallel strike-slip faults create a complex plate boundary zone in the upper, brittle crust. These structures may be decoupled from underlying lower crustal gabbroic rocks that are capable of along-axis flow that smooths-out crustal thickness variations. Similar processes may be characteristic of the early history of VRMs and volcanic hotspot ridges related to rifting and seafloor spreading proximal to hotspots.

UR - http://www.scopus.com/inward/record.url?scp=84994803234&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84994803234&partnerID=8YFLogxK

U2 - 10.1139/cjes-2016-0039

DO - 10.1139/cjes-2016-0039

M3 - Article

VL - 53

SP - 1205

EP - 1215

JO - Canadian Journal of Earth Sciences

JF - Canadian Journal of Earth Sciences

SN - 0008-4077

IS - 11

ER -