TY - JOUR
T1 - Crude oil in a shallow sand and gravel aquifer-III. Biogeochemical reactions and mass balance modeling in anoxic groundwater
AU - Baedecker, Mary Jo
AU - Cozzarelli, Isabelle M.
AU - Eganhouse, Robert P.
AU - Siegel, Donald I.
AU - Bennett, Philip C.
PY - 1993/11
Y1 - 1993/11
N2 - Crude oil floating on the water table in a sand and gravel aquifer provides a constant source of hydrocarbons to the groundwater at a site near Bemidji, Minnesota. The degradation of hydrocarbons affects the concentrations of oxidized and reduced aqueous species in the anoxic part of the contaminant plume that developed downgradient from the oil body. The concentrations of Fe2+, Mn2+ and CH4, Eh measurements, and the δ13C ratios of the total inorganic C indicate that the plume became more reducing ver a 5-a period. However, the size of the contaminant plume remained stable during this time. Field data coupled with laboratory microcosm experiments indicate that benzene and the alkylbenzenes are degraded in an anoxic environment. In anaerobic microcosm experiments conducted under field conditions, almost complete degradation (98%) was observed for benzene in 125 d and for toluene in 45 d. Concentrations of aqueous Fe2+ and Mn2+ increased in these experiments, indicating that the primary reactions were hydrocarbon degradation coupled with Fe and Mn reduction. Mass transfer calculations on a 40-m flowpath in the anoxic zone, downgradient from the oil body, indicated that the primary reactions in the anoxic zone are oxidation of organic compounds, precipitation of siderite and a ferroan calcite, dissolution of iron oxide and outgassing of CH4 and CO2. The major difference in the two models presented is the ratio of CO2 and CH4 that outgasses. Both models indicate quantitatively that large amounts of Fe are dissolved and reprecipitated as ferrous iron in the anoxic zone of the contaminant plume.
AB - Crude oil floating on the water table in a sand and gravel aquifer provides a constant source of hydrocarbons to the groundwater at a site near Bemidji, Minnesota. The degradation of hydrocarbons affects the concentrations of oxidized and reduced aqueous species in the anoxic part of the contaminant plume that developed downgradient from the oil body. The concentrations of Fe2+, Mn2+ and CH4, Eh measurements, and the δ13C ratios of the total inorganic C indicate that the plume became more reducing ver a 5-a period. However, the size of the contaminant plume remained stable during this time. Field data coupled with laboratory microcosm experiments indicate that benzene and the alkylbenzenes are degraded in an anoxic environment. In anaerobic microcosm experiments conducted under field conditions, almost complete degradation (98%) was observed for benzene in 125 d and for toluene in 45 d. Concentrations of aqueous Fe2+ and Mn2+ increased in these experiments, indicating that the primary reactions were hydrocarbon degradation coupled with Fe and Mn reduction. Mass transfer calculations on a 40-m flowpath in the anoxic zone, downgradient from the oil body, indicated that the primary reactions in the anoxic zone are oxidation of organic compounds, precipitation of siderite and a ferroan calcite, dissolution of iron oxide and outgassing of CH4 and CO2. The major difference in the two models presented is the ratio of CO2 and CH4 that outgasses. Both models indicate quantitatively that large amounts of Fe are dissolved and reprecipitated as ferrous iron in the anoxic zone of the contaminant plume.
UR - http://www.scopus.com/inward/record.url?scp=0027790783&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027790783&partnerID=8YFLogxK
U2 - 10.1016/0883-2927(93)90014-8
DO - 10.1016/0883-2927(93)90014-8
M3 - Article
AN - SCOPUS:0027790783
SN - 0883-2927
VL - 8
SP - 569
EP - 586
JO - Applied Geochemistry
JF - Applied Geochemistry
IS - 6
ER -