TY - GEN
T1 - Crawling the community structure of multiplex networks
AU - Laishram, Ricky
AU - Wendt, Jeremy D.
AU - Soundarajan, Sucheta
N1 - Publisher Copyright:
© 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2019
Y1 - 2019
N2 - We examine the problem of crawling the community structure of a multiplex network containing multiple layers of edge relationships. While there has been a great deal of work examining community structure in general, and some work on the problem of sampling a network to preserve its community structure, to the best of our knowledge, this is the first work to consider this problem on multiplex networks. We consider the specific case in which the layers of a multiplex network have different query (collection) costs and reliabilities; and a data collector is interested in identifying the community structure of the most expensive layer. We propose MultiComSample (MCS), a novel algorithm for crawling a multiplex network. MCS uses multiple levels of multi-armed bandits to determine the best layers, communities and node roles for selecting nodes to query. We test MCS against six baseline algorithms on real-world multiplex networks, and achieved large gains in performance. For example, after consuming a budget equivalent to sampling 20% of the nodes in the expensive layer, we observe that MCS outperforms the best baseline by up to 49%.
AB - We examine the problem of crawling the community structure of a multiplex network containing multiple layers of edge relationships. While there has been a great deal of work examining community structure in general, and some work on the problem of sampling a network to preserve its community structure, to the best of our knowledge, this is the first work to consider this problem on multiplex networks. We consider the specific case in which the layers of a multiplex network have different query (collection) costs and reliabilities; and a data collector is interested in identifying the community structure of the most expensive layer. We propose MultiComSample (MCS), a novel algorithm for crawling a multiplex network. MCS uses multiple levels of multi-armed bandits to determine the best layers, communities and node roles for selecting nodes to query. We test MCS against six baseline algorithms on real-world multiplex networks, and achieved large gains in performance. For example, after consuming a budget equivalent to sampling 20% of the nodes in the expensive layer, we observe that MCS outperforms the best baseline by up to 49%.
UR - http://www.scopus.com/inward/record.url?scp=85073358926&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85073358926&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85073358926
T3 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
SP - 168
EP - 175
BT - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PB - AAAI Press
T2 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Y2 - 27 January 2019 through 1 February 2019
ER -