Coverage in heterogeneous downlink millimeter wave cellular networks

Esma Turgut, M. Cenk Gursoy

Research output: Chapter in Book/Entry/PoemConference contribution

3 Scopus citations

Abstract

In this paper, we provide an analytical framework to analyze heterogeneous downlink mmWave cellular networks consisting of K tiers of randomly located base stations (BSs) where each tier operates in a mmWave frequency band. Signal-to-interference-plus-noise ratio (SINR) coverage probability is derived for the entire network using tools from stochastic geometry. The distinguishing features of mmWave communications such as directional beamforming and having different path loss laws for line-of-sight (LOS) and non-line-of-sight (NLOS) links are incorporated into the coverage analysis by assuming averaged biased-received power association and Nakagami-m fading. By using the noise-limited assumption for mmWave networks, a simpler expression requiring the computation of only one numerical integral for coverage probability is obtained. Finally, effect of beamforming alignment errors on the coverage probability analysis is investigated to get insight on the performance in practical scenarios.

Original languageEnglish (US)
Title of host publication2016 IEEE Global Communications Conference, GLOBECOM 2016 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509013289
DOIs
StatePublished - 2016
Event59th IEEE Global Communications Conference, GLOBECOM 2016 - Washington, United States
Duration: Dec 4 2016Dec 8 2016

Publication series

Name2016 IEEE Global Communications Conference, GLOBECOM 2016 - Proceedings

Other

Other59th IEEE Global Communications Conference, GLOBECOM 2016
Country/TerritoryUnited States
CityWashington
Period12/4/1612/8/16

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Networks and Communications
  • Hardware and Architecture
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Coverage in heterogeneous downlink millimeter wave cellular networks'. Together they form a unique fingerprint.

Cite this