Abstract
For a large liquid-argon time-projection chamber (LArTPC) operating on or near the Earth's surface to detect neutrino interactions, the rejection of cosmogenic background is a critical and challenging task because of the large cosmic-ray flux and the long drift time of the time-projection chamber. We introduce a superior cosmic background rejection procedure based on the Wire-Cell three-dimensional (3D) event reconstruction for LArTPCs. From an initial 1:20 000 neutrino to cosmic-ray background ratio, we demonstrate these tools on data from the MicroBooNE experiment and create a high-performance generic neutrino event selection with a cosmic contamination of 14.9% (9.7%) for a visible energy region greater than O(200) MeV. The neutrino interaction selection efficiency is 80.4% and 87.6% for inclusive νμ charged-current and νe charged-current interactions, respectively. This significantly improved performance compared with existing reconstruction algorithms marks a major milestone toward reaching the scientific goals of LArTPC neutrino oscillation experiments operating near the Earth's surface.
Original language | English (US) |
---|---|
Article number | 064071 |
Journal | Physical Review Applied |
Volume | 15 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2021 |
ASJC Scopus subject areas
- General Physics and Astronomy