Corrination mitigates peptide aggregation as exemplified for Glucagon

Amber Liles, Nancy Cham, Morgan L. Opp, Ian C. Tinsley, Oleg G. Chepurny, George G. Holz, Robert P. Doyle

Research output: Contribution to journalArticlepeer-review


Pharmaceutical development of glucagon for use in acute hypoglycemia has proved challenging, due in large part to poor solubility, poor stability and aggregate formation. Herein, we describe highly soluble, low aggregating, glucagon conjugates generated through use of the commercially available vitamin B12 precursor dicyanocobinamide (‘corrination’), which retain full stimulatory action at the human glucagon receptor. The modified glucagon analogs were tested in a chemical stability assay in 50 mM phosphate buffer and the percentage of original concentration retained was determined after two weeks of incubation at 37 ° C. Aggregate formation assays were also performed after 48 h of agitation at 37 °C using a thioflavin (ThT) fluorescence-based assay. All corrinated compounds retained original concentration to a higher degree than glucagon controls and showed markedly decreased aggregation compared to their respective noncorrinated analogues. Based on the statistically significant increase in chemical stability coupled with the notably decreased tendency to form aggregates, analogues 2 and its corrinated conjugate 5 were used for a functional assay study performed after agitation at 37 °C for 24-hr after which agonism was measured at the human glucagon receptor using a cAMP FRET assay. Corrinated 5 exhibited a 6.6-fold increased potency relative to glucagon, which was shown to have a 165-fold reduction in potency. The relative potency of 5 was also improved compared to that of 2 with EC50 values of 5.5 nM and 9.6 nM for 5 and 2, respectively. In conclusion, corrination of peptides mitigates aggregation, presenting a compound with prolonged stability and agonism as demonstrated for glucagon.

Original languageEnglish (US)
Article number171134
StatePublished - Jan 2024


  • Aggregation
  • Agonism
  • Corrination
  • Glucagon

ASJC Scopus subject areas

  • Biochemistry
  • Physiology
  • Endocrinology
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Corrination mitigates peptide aggregation as exemplified for Glucagon'. Together they form a unique fingerprint.

Cite this