Abstract
Alginate, a biocompatible polymer naturally derived from algae, is widely used as a synthetic analogue of the extracellular matrix in tissue engineering. Integrin-binding peptide motifs, including RGD, a derivative of fibronectin, are typically grafted to the alginate polymer through carbodiimide reactions between peptide amines and alginate uronic acids. However, lack of chemo-selectivity of carbodiimide reactions can lead to side reactions that lower peptide bioactivity. To overcome these limitations, we developed an approach for copper-free, strain-promoted azide-alkyne cycloaddition (SPAAC)-mediated conjugation of azide-modified adhesive peptides (azido-cyclo-RGD, Az-cRGD) onto alginate. Successful conjugation of azide-reactive cyclooctynes onto alginates using a heterobifunctional crosslinker was confirmed by azido-coumarin fluorescent assay, NMR, and through click reactions with azide-modified fluorescent probes. Compared to cyclo-RGD peptides directly conjugated to alginate polymers with standard carbodiimide chemistry, Az-cyclo-RGD peptides exhibited higher bioactivity, as demonstrated by cell adhesion and proliferation assays. Finally, Az-cRGD peptides enhanced the effects of recombinant bone morphogenetic proteins on inducing osteogenesis of osteoblasts and bone marrow stromal stem cells in 3D alginate gels. SPAAC-mediated click approaches for peptide-alginate bioconjugation overcome the limitations of previous alginate bioconjugation approaches and potentially expand the range of ligands that can be grafted to alginate polymers for tissue engineering applications.
Original language | English (US) |
---|---|
Pages (from-to) | 1229-1237 |
Number of pages | 9 |
Journal | ACS Applied Bio Materials |
Volume | 4 |
Issue number | 2 |
DOIs | |
State | Published - Feb 15 2021 |
Externally published | Yes |
Keywords
- alginate hydrogels
- bone marrow stromal cells
- click chemistry
- extracellular matrix (ECM)
- integrin
ASJC Scopus subject areas
- General Chemistry
- Biochemistry, medical
- Biomedical Engineering
- Biomaterials