TY - JOUR
T1 - Convolutional neural network for multiple particle identification in the MicroBooNE liquid argon time projection chamber
AU - MicroBooNE Collaboration
AU - Abratenko, P.
AU - Alrashed, M.
AU - An, R.
AU - Anthony, J.
AU - Asaadi, J.
AU - Ashkenazi, A.
AU - Balasubramanian, S.
AU - Baller, B.
AU - Barnes, C.
AU - Barr, G.
AU - Basque, V.
AU - Bathe-Peters, L.
AU - Benevides Rodrigues, O.
AU - Berkman, S.
AU - Bhanderi, A.
AU - Bhat, A.
AU - Bishai, M.
AU - Blake, A.
AU - Bolton, T.
AU - Camilleri, L.
AU - Caratelli, D.
AU - Terrazas, I. Caro
AU - Fernandez, R. Castillo
AU - Cavanna, F.
AU - Cerati, G.
AU - Chen, Y.
AU - Church, E.
AU - Cianci, D.
AU - Conrad, J. M.
AU - Convery, M.
AU - Cooper-Troendle, L.
AU - Crespo-Anadón, J. I.
AU - Del Tutto, M.
AU - Devitt, D.
AU - Diurba, R.
AU - Domine, L.
AU - Dorrill, R.
AU - Duffy, K.
AU - Dytman, S.
AU - Eberly, B.
AU - Ereditato, A.
AU - Escudero Sanchez, L.
AU - Evans, J. J.
AU - Fiorentini Aguirre, G. A.
AU - Fitzpatrick, R. S.
AU - Fleming, B. T.
AU - Foppiani, N.
AU - Franco, D.
AU - Furmanski, A. P.
AU - Soderberg, M.
N1 - Publisher Copyright:
© 2021 American Physical Society. All rights reserved.
PY - 2021/5/1
Y1 - 2021/5/1
N2 - We present the multiple particle identification (MPID) network, a convolutional neural network for multiple object classification, developed by MicroBooNE. MPID provides the probabilities that an interaction includes an e-,γ, μ-, π±, and protons in a liquid argon time projection chamber single readout plane. The network extends the single particle identification network previously developed by Micro-BooNE [Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber, R. Acciarri et al. J. Instrum. 12, P03011 (2017)]. MPID takes as input an image either cropped around a reconstructed interaction vertex or containing only activity connected to a reconstructed vertex, therefore relieving the tool from inefficiencies in vertex finding and particle clustering. The network serves as an important component in MicroBooNE's deep-learning-based ?e search analysis. In this paper, we present the network's design, training, and performance on simulation and data from the MicroBooNE detector.
AB - We present the multiple particle identification (MPID) network, a convolutional neural network for multiple object classification, developed by MicroBooNE. MPID provides the probabilities that an interaction includes an e-,γ, μ-, π±, and protons in a liquid argon time projection chamber single readout plane. The network extends the single particle identification network previously developed by Micro-BooNE [Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber, R. Acciarri et al. J. Instrum. 12, P03011 (2017)]. MPID takes as input an image either cropped around a reconstructed interaction vertex or containing only activity connected to a reconstructed vertex, therefore relieving the tool from inefficiencies in vertex finding and particle clustering. The network serves as an important component in MicroBooNE's deep-learning-based ?e search analysis. In this paper, we present the network's design, training, and performance on simulation and data from the MicroBooNE detector.
UR - http://www.scopus.com/inward/record.url?scp=85106045225&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85106045225&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.103.092003
DO - 10.1103/PhysRevD.103.092003
M3 - Article
AN - SCOPUS:85106045225
SN - 2470-0010
VL - 103
JO - Physical Review D
JF - Physical Review D
IS - 9
M1 - 092003
ER -