TY - JOUR
T1 - Convolutional neural network for multiple particle identification in the MicroBooNE liquid argon time projection chamber
AU - MicroBooNE Collaboration
AU - Abratenko, P.
AU - Alrashed, M.
AU - An, R.
AU - Anthony, J.
AU - Asaadi, J.
AU - Ashkenazi, A.
AU - Balasubramanian, S.
AU - Baller, B.
AU - Barnes, C.
AU - Barr, G.
AU - Basque, V.
AU - Bathe-Peters, L.
AU - Benevides Rodrigues, O.
AU - Berkman, S.
AU - Bhanderi, A.
AU - Bhat, A.
AU - Bishai, M.
AU - Blake, A.
AU - Bolton, T.
AU - Camilleri, L.
AU - Caratelli, D.
AU - Terrazas, I. Caro
AU - Fernandez, R. Castillo
AU - Cavanna, F.
AU - Cerati, G.
AU - Chen, Y.
AU - Church, E.
AU - Cianci, D.
AU - Conrad, J. M.
AU - Convery, M.
AU - Cooper-Troendle, L.
AU - Crespo-Anadón, J. I.
AU - Del Tutto, M.
AU - Devitt, D.
AU - Diurba, R.
AU - Domine, L.
AU - Dorrill, R.
AU - Duffy, K.
AU - Dytman, S.
AU - Eberly, B.
AU - Ereditato, A.
AU - Escudero Sanchez, L.
AU - Evans, J. J.
AU - Fiorentini Aguirre, G. A.
AU - Fitzpatrick, R. S.
AU - Fleming, B. T.
AU - Foppiani, N.
AU - Franco, D.
AU - Furmanski, A. P.
AU - Soderberg, M.
N1 - Funding Information:
This document was prepared by the MicroBooNE Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. MicroBooNE is supported by the following: the U.S. Department of Energy, Office of Science, Offices of High Energy Physics and Nuclear Physics; the U.S. National Science Foundation; the Swiss National Science Foundation; the Science and Technology Facilities Council (STFC), part of the United Kingdom Research and Innovation; and The Royal Society (United Kingdom). Additional support for the laser calibration system and cosmic ray tagger was provided by the Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
Publisher Copyright:
© 2021 American Physical Society. All rights reserved.
PY - 2021/5/1
Y1 - 2021/5/1
N2 - We present the multiple particle identification (MPID) network, a convolutional neural network for multiple object classification, developed by MicroBooNE. MPID provides the probabilities that an interaction includes an e-,γ, μ-, π±, and protons in a liquid argon time projection chamber single readout plane. The network extends the single particle identification network previously developed by Micro-BooNE [Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber, R. Acciarri et al. J. Instrum. 12, P03011 (2017)]. MPID takes as input an image either cropped around a reconstructed interaction vertex or containing only activity connected to a reconstructed vertex, therefore relieving the tool from inefficiencies in vertex finding and particle clustering. The network serves as an important component in MicroBooNE's deep-learning-based ?e search analysis. In this paper, we present the network's design, training, and performance on simulation and data from the MicroBooNE detector.
AB - We present the multiple particle identification (MPID) network, a convolutional neural network for multiple object classification, developed by MicroBooNE. MPID provides the probabilities that an interaction includes an e-,γ, μ-, π±, and protons in a liquid argon time projection chamber single readout plane. The network extends the single particle identification network previously developed by Micro-BooNE [Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber, R. Acciarri et al. J. Instrum. 12, P03011 (2017)]. MPID takes as input an image either cropped around a reconstructed interaction vertex or containing only activity connected to a reconstructed vertex, therefore relieving the tool from inefficiencies in vertex finding and particle clustering. The network serves as an important component in MicroBooNE's deep-learning-based ?e search analysis. In this paper, we present the network's design, training, and performance on simulation and data from the MicroBooNE detector.
UR - http://www.scopus.com/inward/record.url?scp=85106045225&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85106045225&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.103.092003
DO - 10.1103/PhysRevD.103.092003
M3 - Article
AN - SCOPUS:85106045225
SN - 2470-0010
VL - 103
JO - Physical Review D
JF - Physical Review D
IS - 9
M1 - 092003
ER -