TY - GEN
T1 - Coherent structure identification in a lobed mixer
AU - Ukeiley, L.
AU - Wick, D.
AU - Glauser, M.
N1 - Publisher Copyright:
© 1991 by ASME.
PY - 1991
Y1 - 1991
N2 - The influence of large scale structures on the flow in a lobed mixer (a device utilized to enhance streamwise vorticity for increased mixing) is examined by a pseudo flow visualization method (v. Delville et al. 1988), and the Proper Orthogonal Decomposition (POD) (v. Lumley 1967). The pseudo flow visualization method utilizes specially designed hot wire rakes with high spatial resolution to provide the capability of plotting instantaneous velocity profiles. In this work, a rake of 15 hot wires is used to provide these profiles for a velocity ratio of 2:1, at several positions downstream of the lobed mixer. From these profiles a detailed description of the flow field is achieved. In particular, from this information, an idea of the spatial extent and shedding frequency of the large scale structures is determined. The shedding frequencies found are consistent with those found from spectral measurements. A one-dimensional version of the POD is then applied, which utilizes the measured streamwise velocity two-point correlation tensor. The pseudo flow visualization technique is then used to view the contribution from each proper orthogonal mode to the instantaneous signal and comparisons made to the full signal.
AB - The influence of large scale structures on the flow in a lobed mixer (a device utilized to enhance streamwise vorticity for increased mixing) is examined by a pseudo flow visualization method (v. Delville et al. 1988), and the Proper Orthogonal Decomposition (POD) (v. Lumley 1967). The pseudo flow visualization method utilizes specially designed hot wire rakes with high spatial resolution to provide the capability of plotting instantaneous velocity profiles. In this work, a rake of 15 hot wires is used to provide these profiles for a velocity ratio of 2:1, at several positions downstream of the lobed mixer. From these profiles a detailed description of the flow field is achieved. In particular, from this information, an idea of the spatial extent and shedding frequency of the large scale structures is determined. The shedding frequencies found are consistent with those found from spectral measurements. A one-dimensional version of the POD is then applied, which utilizes the measured streamwise velocity two-point correlation tensor. The pseudo flow visualization technique is then used to view the contribution from each proper orthogonal mode to the instantaneous signal and comparisons made to the full signal.
UR - http://www.scopus.com/inward/record.url?scp=84924872547&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84924872547&partnerID=8YFLogxK
U2 - 10.1115/91GT307
DO - 10.1115/91GT307
M3 - Conference contribution
AN - SCOPUS:84924872547
T3 - Proceedings of the ASME Turbo Expo
BT - Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition, GT 1991
Y2 - 3 June 1991 through 6 June 1991
ER -