Abstract
The photoresponse of magnetoresistance of a high-density two-dimensional electron system to microwave electromagnetic radiation is studied. The damping of the Shubnikov-de Haas oscillation by radiation with a non-monotonic dependence of this effect on the magnetic field and the radiation-induced oscillations of magnetoresistance are observed. The damping is most pronounced within isolated narrow magnetic field intervals that closely correspond to the expected positions of magnetoplasma resonances in the sample under study and also near the cyclotron resonance position. A "window" is observed in the photoresponse near the field value predicted on the basis of a single-particle electron spectrum consisting of broadened Landau levels. The radiation-induced oscillations, the window in the photoresponse, and the damping of the Shubnikov-de Haas oscillations near the cyclotron resonance are described in terms of the theory based on the concept of the nonequilibrium filling of single-electron states. Thus, it is demonstrated that the photoresponse pattern observed in the experiment is formed by both single-particle and collective (magnetoplasma) effects.
Original language | English (US) |
---|---|
Pages (from-to) | 576-580 |
Number of pages | 5 |
Journal | JETP Letters |
Volume | 85 |
Issue number | 11 |
DOIs | |
State | Published - Aug 2007 |
Externally published | Yes |
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)