Clinical isolates of Candida albicans, Candida tropicalis, and Candida krusei have different susceptibilities to Co(II) and Cu(II) complexes of 1,10-phenanthroline

Amanda E. Hoffman, Leann Miles, Tiffany J. Greenfield, Carolyn Shoen, Michelle Destefano, Michael Cynamon, Robert Patrick Doyle

Research output: Contribution to journalArticle

5 Scopus citations


The minimal inhibitory concentrations (MICs) of copper and cobalt based dimeric pyrophosphate complexes with capping 1,10-phenanthroline groups on clinical isolates of C. albicans (28 isolates), C. krusei (20 isolates) and C. tropicalis (20 isolates) are reported. C. albicans was inhibited by the cobalt complex better than by the copper complex, while C. krusei demonstrated the opposite results. C. tropicalis showed similar sensitivities to both metals in terms of calculated MIC50 values but was more sensitive to cobalt when MIC90 values were noted. Knockout strains of C. albicans that had the copper efflux protein P-type ATPase (CRP1), the copper binding metallothionein CUP1 or both CRP1/CUP1 removed clearly demonstrate that the origins of copper resistant in C. albicans lies primarily in the P-type ATPase, with the MT playing an important secondary role in the absence of the efflux protein. This study suggests that certain strains of Candida have evolved to protect against particular metal ions and that in the case of C. albicans, a primary invasive fungal species, cobalt may be a good starting-point for new therapeutic development.

Original languageEnglish (US)
Pages (from-to)415-423
Number of pages9
Issue number2
StatePublished - Apr 1 2015



  • Candida
  • Cobalt
  • Copper
  • MIC<inf>50</inf>
  • MIC<inf>90</inf>
  • Pyrophosphate

ASJC Scopus subject areas

  • Biomaterials
  • Metals and Alloys
  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)

Cite this