Cleavage of DNA by the insulin-mimetic compound, NH4[VO(O2)2(phen)]

Catharina Hiort, Jerry Goodisman, James C. Dabrowiak

Research output: Contribution to journalArticlepeer-review

55 Scopus citations


The kinetics and mechanism of cleavage of DNA by the insulin-mimetic peroxo-vanadate NH4[VO(O2)2(phen)], pV, are described. In the presence of low energy UV radiation or biologically common reducing agents, pV decomposes into the monomer, dimer, and tetramer of vanadate and an uncharacterized compound of V4+ as shown by 51V NMR, ESR, and absorption spectra. The rate of photodecomposition of pV is reduced in the presence of calf thymus DNA, indicating that a decomposition product of the peroxo-vanadate, that is important in the destruction pathway of the complex, is interacting with DNA. This species, probably a short-lived complex of V4+, may also be responsible for the observed catalytic decomposition of pV in the absence of DNA by ascorbate. If closed circular pBR322 DNA is present when the peroxo- vanadate is destroyed by either UV radiation or reducing agents, the polymer may have its sugar-phosphate backbone broken. Closed circular DNA (form I) is converted into nicked circular DNA (form II) and linear DNA (form III). The amounts of the various forms produced as a function of irradiation time and peroxo-vanadate concentration were fit to a kinetic model to derive rate constants for the conversions. The kinetic analysis shows that pV is a single-strand nicking agent which exhibits some base and/or sequence preference. Furthermore, the pH dependences of the rates for conversion of form I to form II and for conversion of form II to form III are different, indicating that the nature of the chemistry at the site of cleavage on DNA influences further cutting by activated pV. Reduced amounts of DNA breakage in the presence of various salts and metal binding ligands indicate that a short-lived reactive complex of V4+, not the V4+ species detected by ESR at long irradiation times, is important in the cleavage process. The susceptibility of pV to decomposition by biologically common reducing agents suggests that metabolites of the agent, and not the compound itself, are responsible for its insulin-mimetic effects.

Original languageEnglish (US)
Pages (from-to)12354-12362
Number of pages9
Issue number38
StatePublished - 1996

ASJC Scopus subject areas

  • Biochemistry


Dive into the research topics of 'Cleavage of DNA by the insulin-mimetic compound, NH4[VO(O2)2(phen)]'. Together they form a unique fingerprint.

Cite this