ClaDia: A fuzzy classifier system for disease diagnosis

David Walter, Chilukuri K. Mohan

Research output: Contribution to conferencePaperpeer-review

26 Scopus citations

Abstract

This paper describes ClaDia, a learning classifier system applied to the Wisconsin breast cancer data set, using a fuzzy representation of the rules, a median-based fuzzy combination rule, and separate subpopulations for each class. The system achieves a classification rate of over 90%, for many sets of system parameter values.

Original languageEnglish (US)
Pages1429-1435
Number of pages7
StatePublished - 2000
EventProceedings of the 2000 Congress on Evolutionary Computation - California, CA, USA
Duration: Jul 16 2000Jul 19 2000

Other

OtherProceedings of the 2000 Congress on Evolutionary Computation
CityCalifornia, CA, USA
Period7/16/007/19/00

ASJC Scopus subject areas

  • General Engineering
  • General Computer Science
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'ClaDia: A fuzzy classifier system for disease diagnosis'. Together they form a unique fingerprint.

Cite this