TY - GEN
T1 - Charge allocation for hybrid electrical energy storage systems
AU - Xie, Qing
AU - Wang, Yanzhi
AU - Kim, Younghyun
AU - Chang, Naehyuck
AU - Pedram, Massoud
PY - 2011
Y1 - 2011
N2 - Hybrid electrical energy storage (HEES) systems, composed of multiple banks of heterogeneous electrical energy storage (EES) elements with their unique strengths and weaknesses, have been introduced to efficiently store and retrieve electrical energy while attaining performance metrics that are close to their respective best values across their constituent EES elements. This paper is the first paper to formally describe the charge allocation problem and provide a systematic solution method aiming at the maximum charge allocation efficiency, which performing proper distribution of the incoming power to selected destination banks. We introduce a generalized HEES architecture and build the corresponding electrical circuit models of the chargers and banks. We formulate a mixed integer nonlinear optimization problem, where the objective function is the global charge allocation efficiency, and the constraints are energy conservations, with careful consideration of the conversion power loss in the chargers, rate capacity effect and self-discharge of the EES elements, charge transfer losses, and so on. We present a rigorous algorithm to achieve a near-optimal global charge allocation efficiency for long-term charge allocation process (i.e., tens of hours.) Experimental results based on a photovoltaic cell array as the incoming power source and a HEES system comprised on batteries and supercapacitors demonstrate a significant gain in charge allocation efficiency for the proposed algorithm.
AB - Hybrid electrical energy storage (HEES) systems, composed of multiple banks of heterogeneous electrical energy storage (EES) elements with their unique strengths and weaknesses, have been introduced to efficiently store and retrieve electrical energy while attaining performance metrics that are close to their respective best values across their constituent EES elements. This paper is the first paper to formally describe the charge allocation problem and provide a systematic solution method aiming at the maximum charge allocation efficiency, which performing proper distribution of the incoming power to selected destination banks. We introduce a generalized HEES architecture and build the corresponding electrical circuit models of the chargers and banks. We formulate a mixed integer nonlinear optimization problem, where the objective function is the global charge allocation efficiency, and the constraints are energy conservations, with careful consideration of the conversion power loss in the chargers, rate capacity effect and self-discharge of the EES elements, charge transfer losses, and so on. We present a rigorous algorithm to achieve a near-optimal global charge allocation efficiency for long-term charge allocation process (i.e., tens of hours.) Experimental results based on a photovoltaic cell array as the incoming power source and a HEES system comprised on batteries and supercapacitors demonstrate a significant gain in charge allocation efficiency for the proposed algorithm.
KW - Charge allocation
KW - Charge management
KW - Hybrid electrical energy storage system
UR - http://www.scopus.com/inward/record.url?scp=81355132235&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=81355132235&partnerID=8YFLogxK
U2 - 10.1145/2039370.2039413
DO - 10.1145/2039370.2039413
M3 - Conference contribution
AN - SCOPUS:81355132235
SN - 9781450307154
T3 - Embedded Systems Week 2011, ESWEEK 2011 - Proceedings of the 9th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS'11
SP - 277
EP - 284
BT - Embedded Systems Week 2011, ESWEEK 2011 - Proceedings of the 9th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS'11
T2 - Embedded Systems Week 2011, ESWEEK 2011 - 9th IEEE/ACM International Conference on Hardware/Software-Codesign and System Synthesis, CODES+ISSS'11
Y2 - 9 October 2011 through 14 October 2011
ER -