Characterization of lipid membrane properties for tunable electroporation

H. Jeremy Cho, Shalabh C. Maroo, Evelyn N. Wang

Research output: Chapter in Book/Entry/PoemConference contribution

Abstract

Lipid bilayers form nanopores on the application of an electric field. This process of electroporation can be utilized in different applications ranging from targeted drug delivery in cells to nano-gating membrane for engineering applications. However, the ease of electroporation is dependent on the surface energy of the lipid layers and thus directly related to the packing structure of the lipid molecules. 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid monolayers were deposited on a mica substrate using the Langmuir-Blodgett (LB) technique at different packing densities and analyzed using atomic force microscopy (AFM). The wetting behavior of these monolayers was investigated by contact angle measurement and molecular dynamics simulations. It was found that an equilibrium packing density of liquid-condensed (LC) phase DPPC likely exists and that water molecules can penetrate the monolayer displacing the lipid molecules. The surface tension of the monolayer in air and water was obtained along with its breakthrough force.

Original languageEnglish (US)
Title of host publicationASME 2012 3rd International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2012
Pages345-353
Number of pages9
DOIs
StatePublished - 2012
EventASME 2012 3rd International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2012 - Atlanta, GA, United States
Duration: Mar 3 2012Mar 6 2012

Publication series

NameASME 2012 3rd International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2012

Other

OtherASME 2012 3rd International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2012
Country/TerritoryUnited States
CityAtlanta, GA
Period3/3/123/6/12

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Characterization of lipid membrane properties for tunable electroporation'. Together they form a unique fingerprint.

Cite this