Centromere satellites from Arabidopsis populations: Maintenance of conserved and variable domains

Sarah E. Hall, Gregory Kettler, Daphne Preuss

Research output: Contribution to journalArticlepeer-review

103 Scopus citations

Abstract

The rapid evolution of centromere sequences between species has led to a debate over whether centromere activity is sequence-dependent. The Arabidopsis thaliana centromere regions contain ∼20,000 copies of a 178-bp satellite repeat. Here, we analyzed satellites from 41 Arabidopsis ecotypes, providing the first broad population survey of satellite variation within a species. We found highly conserved segments and consistent sequence lengths in the Arabidopsis satellites and in the published collection of human α-satellites, supporting models for a functional role. Despite this conservation, polymorphisms are significantly enriched at some sites, yielding variation that could restrict binding proteins to a subset of repeat monomers. Some satellite regions vary considerably; at certain bases, consensus sequences derived from each ecotype diverge significantly from the Arabidopsis consensus, indicating substitutions sweep through a genome in less than 5 million years. Such rapid changes generate more variation within the set of Arabidopsis satellites than in genes from the chromosome arms or from the recombinationally suppressed centromere regions. These studies highlight a balance between the mechanisms that maintain particular satellite domains and the forces that disperse sequence changes throughout the satellite repeats in the genome.

Original languageEnglish (US)
Pages (from-to)195-205
Number of pages11
JournalGenome Research
Volume13
Issue number2
DOIs
StatePublished - Feb 1 2003
Externally publishedYes

ASJC Scopus subject areas

  • Genetics
  • Genetics(clinical)

Fingerprint

Dive into the research topics of 'Centromere satellites from Arabidopsis populations: Maintenance of conserved and variable domains'. Together they form a unique fingerprint.

Cite this