Bi-lipschitz embedding of projective metrics

Research output: Research - peer-reviewArticle

Abstract

We give a sufficient condition for a projective metric on a subset of a Euclidean space to admit a bi-Lipschitz embedding into Euclidean space of the same dimension.

LanguageEnglish (US)
Pages110-118
Number of pages9
JournalConformal Geometry and Dynamics
Volume18
Issue number7
StatePublished - 2014

Fingerprint

Lipschitz
Euclidean space
Metric
Subset
Sufficient Conditions

ASJC Scopus subject areas

  • Geometry and Topology

Cite this

Bi-lipschitz embedding of projective metrics. / Kovalev, Leonid V.

In: Conformal Geometry and Dynamics, Vol. 18, No. 7, 2014, p. 110-118.

Research output: Research - peer-reviewArticle

@article{cb960d2b98cd41df9af50440522802b7,
title = "Bi-lipschitz embedding of projective metrics",
abstract = "We give a sufficient condition for a projective metric on a subset of a Euclidean space to admit a bi-Lipschitz embedding into Euclidean space of the same dimension.",
author = "Kovalev, {Leonid V.}",
year = "2014",
volume = "18",
pages = "110--118",
journal = "Conformal Geometry and Dynamics",
issn = "1088-4173",
publisher = "American Mathematical Society",
number = "7",

}

TY - JOUR

T1 - Bi-lipschitz embedding of projective metrics

AU - Kovalev,Leonid V.

PY - 2014

Y1 - 2014

N2 - We give a sufficient condition for a projective metric on a subset of a Euclidean space to admit a bi-Lipschitz embedding into Euclidean space of the same dimension.

AB - We give a sufficient condition for a projective metric on a subset of a Euclidean space to admit a bi-Lipschitz embedding into Euclidean space of the same dimension.

UR - http://www.scopus.com/inward/record.url?scp=84927591788&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84927591788&partnerID=8YFLogxK

M3 - Article

VL - 18

SP - 110

EP - 118

JO - Conformal Geometry and Dynamics

T2 - Conformal Geometry and Dynamics

JF - Conformal Geometry and Dynamics

SN - 1088-4173

IS - 7

ER -