TY - GEN
T1 - Balanced reconfiguration of storage banks in a hybrid electrical energy storage system
AU - Kim, Younghyun
AU - Park, Sangyoung
AU - Wang, Yanzhi
AU - Xie, Qing
AU - Chang, Naehyuck
AU - Poncino, Massimo
AU - Pedram, Massoud
PY - 2011
Y1 - 2011
N2 - Compared with the conventional homogeneous electrical energy storage (EES) systems, hybrid electrical energy storage (HEES) systems provide high output power and energy density as well as high power conversion efficiency and low self-discharge at a low capital cost. Cycle efficiency of a HEES system (which is defined as the ratio of energy which is delivered by the HEES system to the load device to energy which is supplied by the power source to the HEES system) is one of the most important factors in determining the overall operational cost of the system. Therefore, EES banks within the HEES system should be prudently designed in order to maximize the overall cycle efficiency. However, the cycle efficiency is not only dependent on the EES element type, but also the dynamic conditions such as charge and discharge rates and energy efficiency of peripheral power circuitries. Also, due to the practical limitations of the power conversion circuitry, the specified capacity of the EES bank cannot be fully utilized, which in turn results in over-provisioning and thus additional capital expenditure for a HEES system with a specified level of service. This is the first paper that presents an EES bank reconfiguration architecture aiming at cycle efficiency and capacity utilization enhancement. We first provide a formal definition of balanced configurations and provide a general reconfigurable architecture for a HEES system, analyze key properties of the balanced reconfiguration, and propose a dynamic reconfiguration algorithm for optimal, online adaptation of the HEES system configuration to the characteristics of the power sources and the load devices as well as internal states of the EES banks. Experimental results demonstrate an overall cycle efficiency improvement of by up to 108% for a DC power demand profile, and pulse duty cycle improvement of by up to 127% for high-current pulsed power profile. We also present analysis results for capacity utilization improvement for a reconfigurable EES bank.
AB - Compared with the conventional homogeneous electrical energy storage (EES) systems, hybrid electrical energy storage (HEES) systems provide high output power and energy density as well as high power conversion efficiency and low self-discharge at a low capital cost. Cycle efficiency of a HEES system (which is defined as the ratio of energy which is delivered by the HEES system to the load device to energy which is supplied by the power source to the HEES system) is one of the most important factors in determining the overall operational cost of the system. Therefore, EES banks within the HEES system should be prudently designed in order to maximize the overall cycle efficiency. However, the cycle efficiency is not only dependent on the EES element type, but also the dynamic conditions such as charge and discharge rates and energy efficiency of peripheral power circuitries. Also, due to the practical limitations of the power conversion circuitry, the specified capacity of the EES bank cannot be fully utilized, which in turn results in over-provisioning and thus additional capital expenditure for a HEES system with a specified level of service. This is the first paper that presents an EES bank reconfiguration architecture aiming at cycle efficiency and capacity utilization enhancement. We first provide a formal definition of balanced configurations and provide a general reconfigurable architecture for a HEES system, analyze key properties of the balanced reconfiguration, and propose a dynamic reconfiguration algorithm for optimal, online adaptation of the HEES system configuration to the characteristics of the power sources and the load devices as well as internal states of the EES banks. Experimental results demonstrate an overall cycle efficiency improvement of by up to 108% for a DC power demand profile, and pulse duty cycle improvement of by up to 127% for high-current pulsed power profile. We also present analysis results for capacity utilization improvement for a reconfigurable EES bank.
KW - bank reconfiguration
KW - hybrid electrical energy storage system
UR - http://www.scopus.com/inward/record.url?scp=84862931569&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862931569&partnerID=8YFLogxK
U2 - 10.1109/ICCAD.2011.6105395
DO - 10.1109/ICCAD.2011.6105395
M3 - Conference contribution
AN - SCOPUS:84862931569
SN - 9781457713989
T3 - IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
SP - 624
EP - 631
BT - 2011 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2011
T2 - 2011 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2011
Y2 - 7 November 2011 through 10 November 2011
ER -