Automatic extraction of configuration approximations via nested geometric refinements

Research output: Chapter in Book/Entry/PoemConference contribution

Abstract

The pacing item in the application of computational fluid dynamics (CFD) to new configurations is the pre-processing phase, of which preparation of the geometry is the most time-consuming step. This is especially true for configurations that are defined in a computer-aided design (CAD) system. The primary reason for this difficulty is the existence of both large and small features, some of which are not needed to achieve the results desired by the customer. Users can sometimes remove small unwanted features by suppressing them in the CAD system; this however is not an option when the features emerge during the assembly of parts into a whole model. Described herein is a new technique, called nested geometric refinement, for automatically extracting a computational model from an assembly of parts with features of varying resolutions. When first applied, the technique generates a configuration approximation that has a globally-applied user-defined resolution that is independent of the local feature size. A simple adaptation process is then applied to resolve geometric features only where needed. The application of the technique to a few configurations is shown. In these cases, the effects of both global refinement and adapted refinement are shown. The new technique is very efficient, since small features are ignored in the initial representation. Grids can be generated on assemblies, regardless of how well the parts fit together. Through the use of an adaptation method, the configuration can be refined such that only the pertinent features are resolved.

Original languageEnglish (US)
Title of host publicationCollection of Technical Papers - 45th AIAA Aerospace Sciences Meeting
Pages11791-11796
Number of pages6
StatePublished - 2007
Event45th AIAA Aerospace Sciences Meeting 2007 - Reno, NV, United States
Duration: Jan 8 2007Jan 11 2007

Publication series

NameCollection of Technical Papers - 45th AIAA Aerospace Sciences Meeting
Volume17

Other

Other45th AIAA Aerospace Sciences Meeting 2007
Country/TerritoryUnited States
CityReno, NV
Period1/8/071/11/07

ASJC Scopus subject areas

  • Space and Planetary Science
  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Automatic extraction of configuration approximations via nested geometric refinements'. Together they form a unique fingerprint.

Cite this