TY - GEN
T1 - Automatic extraction of configuration approximations via nested geometric refinements
AU - Dannenhoffer, John F.
PY - 2007
Y1 - 2007
N2 - The pacing item in the application of computational fluid dynamics (CFD) to new configurations is the pre-processing phase, of which preparation of the geometry is the most time-consuming step. This is especially true for configurations that are defined in a computer-aided design (CAD) system. The primary reason for this difficulty is the existence of both large and small features, some of which are not needed to achieve the results desired by the customer. Users can sometimes remove small unwanted features by suppressing them in the CAD system; this however is not an option when the features emerge during the assembly of parts into a whole model. Described herein is a new technique, called nested geometric refinement, for automatically extracting a computational model from an assembly of parts with features of varying resolutions. When first applied, the technique generates a configuration approximation that has a globally-applied user-defined resolution that is independent of the local feature size. A simple adaptation process is then applied to resolve geometric features only where needed. The application of the technique to a few configurations is shown. In these cases, the effects of both global refinement and adapted refinement are shown. The new technique is very efficient, since small features are ignored in the initial representation. Grids can be generated on assemblies, regardless of how well the parts fit together. Through the use of an adaptation method, the configuration can be refined such that only the pertinent features are resolved.
AB - The pacing item in the application of computational fluid dynamics (CFD) to new configurations is the pre-processing phase, of which preparation of the geometry is the most time-consuming step. This is especially true for configurations that are defined in a computer-aided design (CAD) system. The primary reason for this difficulty is the existence of both large and small features, some of which are not needed to achieve the results desired by the customer. Users can sometimes remove small unwanted features by suppressing them in the CAD system; this however is not an option when the features emerge during the assembly of parts into a whole model. Described herein is a new technique, called nested geometric refinement, for automatically extracting a computational model from an assembly of parts with features of varying resolutions. When first applied, the technique generates a configuration approximation that has a globally-applied user-defined resolution that is independent of the local feature size. A simple adaptation process is then applied to resolve geometric features only where needed. The application of the technique to a few configurations is shown. In these cases, the effects of both global refinement and adapted refinement are shown. The new technique is very efficient, since small features are ignored in the initial representation. Grids can be generated on assemblies, regardless of how well the parts fit together. Through the use of an adaptation method, the configuration can be refined such that only the pertinent features are resolved.
UR - http://www.scopus.com/inward/record.url?scp=34250880728&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34250880728&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:34250880728
SN - 1563478900
SN - 9781563478901
T3 - Collection of Technical Papers - 45th AIAA Aerospace Sciences Meeting
SP - 11791
EP - 11796
BT - Collection of Technical Papers - 45th AIAA Aerospace Sciences Meeting
T2 - 45th AIAA Aerospace Sciences Meeting 2007
Y2 - 8 January 2007 through 11 January 2007
ER -