TY - JOUR

T1 - Area integral estimates for the biharmonic operator in lipschitz domains

AU - Pipher, Jill

AU - Verchota, Gregory

PY - 1991/10

Y1 - 1991/10

N2 - Let D ⊆ Rn be a Lipschitz domain and let u be a function biharmonic in D, i.e., ΔΔu = 0 in D. We prove that the nontangential maximal function and the square function of the gradient of u have equivalent Lp(dµ) norms, where d µ ϵ A∞(do) and dσ is surface measure on ∂D.

AB - Let D ⊆ Rn be a Lipschitz domain and let u be a function biharmonic in D, i.e., ΔΔu = 0 in D. We prove that the nontangential maximal function and the square function of the gradient of u have equivalent Lp(dµ) norms, where d µ ϵ A∞(do) and dσ is surface measure on ∂D.

UR - http://www.scopus.com/inward/record.url?scp=0038903494&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0038903494&partnerID=8YFLogxK

U2 - 10.1090/S0002-9947-1991-1024776-7

DO - 10.1090/S0002-9947-1991-1024776-7

M3 - Article

AN - SCOPUS:0038903494

SN - 0002-9947

VL - 327

SP - 903

EP - 917

JO - Transactions of the American Mathematical Society

JF - Transactions of the American Mathematical Society

IS - 2

ER -