TY - JOUR
T1 - Area integral estimates for the biharmonic operator in lipschitz domains
AU - Pipher, Jill
AU - Verchota, Gregory
PY - 1991/10
Y1 - 1991/10
N2 - Let D ⊆ Rn be a Lipschitz domain and let u be a function biharmonic in D, i.e., ΔΔu = 0 in D. We prove that the nontangential maximal function and the square function of the gradient of u have equivalent Lp(dµ) norms, where d µ ϵ A∞(do) and dσ is surface measure on ∂D.
AB - Let D ⊆ Rn be a Lipschitz domain and let u be a function biharmonic in D, i.e., ΔΔu = 0 in D. We prove that the nontangential maximal function and the square function of the gradient of u have equivalent Lp(dµ) norms, where d µ ϵ A∞(do) and dσ is surface measure on ∂D.
UR - http://www.scopus.com/inward/record.url?scp=0038903494&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0038903494&partnerID=8YFLogxK
U2 - 10.1090/S0002-9947-1991-1024776-7
DO - 10.1090/S0002-9947-1991-1024776-7
M3 - Article
AN - SCOPUS:0038903494
SN - 0002-9947
VL - 327
SP - 903
EP - 917
JO - Transactions of the American Mathematical Society
JF - Transactions of the American Mathematical Society
IS - 2
ER -