Arbitrariness and Social Prediction: The Confounding Role of Variance in Fair Classification

A. Feder Cooper, Katherine Lee, Madiha Zahrah Choksi, Solon Barocas, Christopher De Sa, James Grimmelmann, Jon Kleinberg, Siddhartha Sen, Baobao Zhang

Research output: Contribution to journalConference Articlepeer-review

3 Scopus citations

Abstract

Variance in predictions across different trained models is a significant, under-explored source of error in fair binary classification. In practice, the variance on some data examples is so large that decisions can be effectively arbitrary. To investigate this problem, we take an experimental approach and make four overarching contributions. We: 1) Define a metric called self-consistency, derived from variance, which we use as a proxy for measuring and reducing arbitrariness; 2) Develop an ensembling algorithm that abstains from classification when a prediction would be arbitrary; 3) Conduct the largest-to-date empirical study of the role of variance (vis-a-vis self-consistency and arbitrariness) in fair binary classification; and, 4) Release a toolkit that makes the US Home Mortgage Disclosure Act (HMDA) datasets easily usable for future research. Altogether, our experiments reveal shocking insights about the reliability of conclusions on benchmark datasets. Most fair binary classification benchmarks are close-to-fair when taking into account the amount of arbitrariness present in predictions - before we even try to apply any fairness interventions. This finding calls into question the practical utility of common algorithmic fairness methods, and in turn suggests that we should reconsider how we choose to measure fairness in binary classification.

Original languageEnglish (US)
Pages (from-to)22004-22012
Number of pages9
JournalProceedings of the AAAI Conference on Artificial Intelligence
Volume38
Issue number20
DOIs
StatePublished - Mar 25 2024
Event38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada
Duration: Feb 20 2024Feb 27 2024

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Arbitrariness and Social Prediction: The Confounding Role of Variance in Fair Classification'. Together they form a unique fingerprint.

Cite this