TY - JOUR
T1 - Approximation and equidistribution results for pseudo-effective line bundles
AU - Coman, Dan
AU - Marinescu, George
AU - Nguyên, Viêt Anh
N1 - Publisher Copyright:
© 2017 Elsevier Masson SAS
PY - 2018/7
Y1 - 2018/7
N2 - We study the distribution of the common zero sets of m-tuples of holomorphic sections of powers of m singular Hermitian pseudo-effective line bundles on a compact Kähler manifold. As an application, we obtain sufficient conditions which ensure that the wedge product of the curvature currents of these line bundles can be approximated by analytic cycles.
AB - We study the distribution of the common zero sets of m-tuples of holomorphic sections of powers of m singular Hermitian pseudo-effective line bundles on a compact Kähler manifold. As an application, we obtain sufficient conditions which ensure that the wedge product of the curvature currents of these line bundles can be approximated by analytic cycles.
KW - Analytic cycle
KW - Bergman kernel function
KW - Fubini–Study current
KW - Positive closed current
KW - Pseudo-effective line bundle
KW - Zeros of random holomorphic sections
UR - http://www.scopus.com/inward/record.url?scp=85033562664&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85033562664&partnerID=8YFLogxK
U2 - 10.1016/j.matpur.2017.09.010
DO - 10.1016/j.matpur.2017.09.010
M3 - Article
AN - SCOPUS:85033562664
SN - 0021-7824
VL - 115
SP - 218
EP - 236
JO - Journal des Mathematiques Pures et Appliquees
JF - Journal des Mathematiques Pures et Appliquees
ER -