Approximation and equidistribution results for pseudo-effective line bundles

Dan Coman, George Marinescu, Viêt Anh Nguyên

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

We study the distribution of the common zero sets of m-tuples of holomorphic sections of powers of m singular Hermitian pseudo-effective line bundles on a compact Kähler manifold. As an application, we obtain sufficient conditions which ensure that the wedge product of the curvature currents of these line bundles can be approximated by analytic cycles. Nous étudions la distribution de l'ensemble des zéros communs de m-tuplets de sections holomorphes de puissances de m fibrés en droites hermitiens singuliers pseudo-effectifs sur une variété kählérienne compacte. Comme application, nous obtenons des conditions suffisantes pour que le produt extérieur des courants de courbure de ces fibrés puisse être approché par des cycles analytiques.

Original languageEnglish (US)
JournalJournal des Mathematiques Pures et Appliquees
DOIs
StateAccepted/In press - Jan 1 2017

Keywords

  • Analytic cycle
  • Bergman kernel function
  • Fubini-Study current
  • Positive closed current
  • Primary
  • Pseudo-effective line bundle
  • Secondary
  • Zeros of random holomorphic sections

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Approximation and equidistribution results for pseudo-effective line bundles'. Together they form a unique fingerprint.

  • Cite this