An N-dimensional version of the Beurling-Ahlfors extension

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


We extend delta-monotone quasiconformai mappings from dimension n to n + 1 while preserving both monotonicity and quasiconformality. This gives an analytic proof of the extendability of quasiconformal mappings that can be factored into bi-Lipschitz and delta-monotone mappings. In the case n = 1 our approach yields a refinement of the Beurling-Ahlfors extension.

Original languageEnglish (US)
Pages (from-to)321-329
Number of pages9
JournalAnnales Academiae Scientiarum Fennicae Mathematica
Issue number1
StatePublished - 2011


  • Extension
  • Monotone mapping
  • Quasiconformal mapping

ASJC Scopus subject areas

  • General Mathematics


Dive into the research topics of 'An N-dimensional version of the Beurling-Ahlfors extension'. Together they form a unique fingerprint.

Cite this