Abstract
We extend delta-monotone quasiconformai mappings from dimension n to n + 1 while preserving both monotonicity and quasiconformality. This gives an analytic proof of the extendability of quasiconformal mappings that can be factored into bi-Lipschitz and delta-monotone mappings. In the case n = 1 our approach yields a refinement of the Beurling-Ahlfors extension.
Original language | English (US) |
---|---|
Pages (from-to) | 321-329 |
Number of pages | 9 |
Journal | Annales Academiae Scientiarum Fennicae Mathematica |
Volume | 36 |
Issue number | 1 |
DOIs | |
State | Published - 2011 |
Keywords
- Extension
- Monotone mapping
- Quasiconformal mapping
ASJC Scopus subject areas
- General Mathematics