TY - JOUR
T1 - An assessment of the microbial diversity present on the surface of naturally incubated house wren eggs
AU - Potter, Beth A.
AU - Carlson, Brian M.
AU - Adams, Andrea E.
AU - Voss, Margaret A.
PY - 2013
Y1 - 2013
N2 - During ovipositioning, avian eggshells become susceptible to bacterial and fungal growth and studies have shown that a community of these microorganisms, or microflora, is maintained on eggshells throughout the incubation process. To determine the possible role of these microorganisms on embryonic development, it is first important to understand the composition of the microbial community present on the surface of the egg. A limited amount of studies have been published in this area; thus, the objective of this study was to broaden this area of study and determine what bacterial communities are found on the surface of naturally-incubated House Wren eggs across three stages of incubation (pre, early, and late) as defined by egg temperature. Our data uniquely suggest that the eggshell microflora is dynamic and that this may be regulated by temperature fluctuations due to intermittent incubation behavior. Using culture-based techniques, 46 different bacterial species were identified belonging to 13 bacterial families and 20 genera. The majority of bacteria belonged to the Pseudomonas, Staphylococcus, Stenotrophomonas, or Burkholderia genera and have been previously associated with avian eggs and nests. Bacteria within the Pseudomonas genus were the most predominant and we hypothesize that their maintenance may be linked to their ability to produce antibiotic substances called bacteriocins. The bacterial composition of the microflora isolated in this study also suggests that avian egg microfloras are derived from environmental origins.
AB - During ovipositioning, avian eggshells become susceptible to bacterial and fungal growth and studies have shown that a community of these microorganisms, or microflora, is maintained on eggshells throughout the incubation process. To determine the possible role of these microorganisms on embryonic development, it is first important to understand the composition of the microbial community present on the surface of the egg. A limited amount of studies have been published in this area; thus, the objective of this study was to broaden this area of study and determine what bacterial communities are found on the surface of naturally-incubated House Wren eggs across three stages of incubation (pre, early, and late) as defined by egg temperature. Our data uniquely suggest that the eggshell microflora is dynamic and that this may be regulated by temperature fluctuations due to intermittent incubation behavior. Using culture-based techniques, 46 different bacterial species were identified belonging to 13 bacterial families and 20 genera. The majority of bacteria belonged to the Pseudomonas, Staphylococcus, Stenotrophomonas, or Burkholderia genera and have been previously associated with avian eggs and nests. Bacteria within the Pseudomonas genus were the most predominant and we hypothesize that their maintenance may be linked to their ability to produce antibiotic substances called bacteriocins. The bacterial composition of the microflora isolated in this study also suggests that avian egg microfloras are derived from environmental origins.
UR - http://www.scopus.com/inward/record.url?scp=84883099930&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84883099930&partnerID=8YFLogxK
U2 - 10.2174/1874453220130815001
DO - 10.2174/1874453220130815001
M3 - Article
AN - SCOPUS:84883099930
SN - 1874-4532
VL - 6
SP - 32
EP - 39
JO - Open Ornithology Journal
JF - Open Ornithology Journal
IS - 1
ER -