TY - JOUR
T1 - Allocation to male vs female floral function varies by currency and responds differentially to density and moisture stress
AU - Brock, M. T.
AU - Winkelman, R. L.
AU - Rubin, M. J.
AU - Edwards, C. E.
AU - Ewers, B. E.
AU - Weinig, C.
N1 - Publisher Copyright:
© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
PY - 2017/11/1
Y1 - 2017/11/1
N2 - Allocation of finite resources to separate reproductive functions is predicted to vary across environments and affect fitness. Biomass is the most commonly measured allocation currency; however, in comparison with nutrients it may be less limited and express different environmental and evolutionary responses. Here, we measured carbon, nitrogen, phosphorus, and biomass allocation among floral whorls in recombinant inbred lines of Brassica rapa in multiple environments to characterize the genetic architecture of floral allocation, including its sensitivity to environmental heterogeneity and to choice of currency. Mass, carbon, and nitrogen allocation to female whorls (pistils and sepals) decreased under high density, whereas nitrogen allocation to male organs (stamens) decreased under drought. Phosphorus allocation decreased by half in pistils under drought, while stamen phosphorus was unaffected by environment. While the contents of each currency were positively correlated among whorls, selection to improve fitness through female (or male) function typically favored increased allocation to pistils (or stamens) but decreased allocation to other whorls. Finally, genomic regions underlying correlations among allocation metrics were mapped, and loci related to nitrogen uptake and floral organ development were located within mapped quantitative trait loci. Our candidate gene identification suggests that nutrient uptake may be a limiting step in maintaining male allocation. Taken together, allocation to male vs female function is sensitive to distinct environmental stresses, and the choice of currency affects the interpretation of floral allocation responses to the environment. Further, genetic correlations may counter the evolution of allocation patterns that optimize fitness through female or male function.
AB - Allocation of finite resources to separate reproductive functions is predicted to vary across environments and affect fitness. Biomass is the most commonly measured allocation currency; however, in comparison with nutrients it may be less limited and express different environmental and evolutionary responses. Here, we measured carbon, nitrogen, phosphorus, and biomass allocation among floral whorls in recombinant inbred lines of Brassica rapa in multiple environments to characterize the genetic architecture of floral allocation, including its sensitivity to environmental heterogeneity and to choice of currency. Mass, carbon, and nitrogen allocation to female whorls (pistils and sepals) decreased under high density, whereas nitrogen allocation to male organs (stamens) decreased under drought. Phosphorus allocation decreased by half in pistils under drought, while stamen phosphorus was unaffected by environment. While the contents of each currency were positively correlated among whorls, selection to improve fitness through female (or male) function typically favored increased allocation to pistils (or stamens) but decreased allocation to other whorls. Finally, genomic regions underlying correlations among allocation metrics were mapped, and loci related to nitrogen uptake and floral organ development were located within mapped quantitative trait loci. Our candidate gene identification suggests that nutrient uptake may be a limiting step in maintaining male allocation. Taken together, allocation to male vs female function is sensitive to distinct environmental stresses, and the choice of currency affects the interpretation of floral allocation responses to the environment. Further, genetic correlations may counter the evolution of allocation patterns that optimize fitness through female or male function.
UR - http://www.scopus.com/inward/record.url?scp=85031029760&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85031029760&partnerID=8YFLogxK
U2 - 10.1038/hdy.2017.41
DO - 10.1038/hdy.2017.41
M3 - Article
C2 - 28767102
AN - SCOPUS:85031029760
SN - 0018-067X
VL - 119
SP - 349
EP - 359
JO - Heredity
JF - Heredity
IS - 5
ER -