TY - JOUR
T1 - Adaptive processing using a single snapshot for a nonuniformly spaced array in the presence of mutual coupling and near-field scatterers
AU - Kim, Kyungjung
AU - Sarkar, Tapan Kumar
AU - Palma, Magdalena Salazar
N1 - Funding Information:
Manuscript received June 12, 2001; revised September 25, 2001. This work was supported in part by Grant ECS-9901361 from the National Science Foundation under the Wireless Research Initiative.
PY - 2002/5
Y1 - 2002/5
N2 - This paper presents an adaptive technique to extract the signal of interest (SOI) arriving from a known direction in the presence of strong interferers using a single snapshot of data. The antenna elements in this method can be nonuniformly spaced and there can be mutual coupling between them. In addition, near-field scatterers can also be present. First, the voltages induced in the antenna elements of the array due to interferers, mutual coupling between the elements, and near-field scatterers is preprocessed by applying a transformation matrix to these voltages through a rigorous electromagnetic analysis tool. This electromagnetic preprocessing technique transforms the voltages that are induced in a nonuniformly spaced array containing real antenna elements to a set of voltages that will be produced in a uniform linear virtual array (ULVA) containing omnidirectional isotropic point radiators. In the transformation matrix we would like to include various electromagnetic effects like mutual coupling between the antenna elements, presence of near-field scatterers and the platform effects on which the antenna array is mounted. This transformation matrix when applied to the actual measured voltages yields an equivalent set of voltages that will be induced in the ULVA. A direct data domain least squares adaptive algorithm is then applied to the processed voltages to extract the SOI in the presence of interferers. Limited numerical examples are presented to illustrate the novelty of the proposed method.
AB - This paper presents an adaptive technique to extract the signal of interest (SOI) arriving from a known direction in the presence of strong interferers using a single snapshot of data. The antenna elements in this method can be nonuniformly spaced and there can be mutual coupling between them. In addition, near-field scatterers can also be present. First, the voltages induced in the antenna elements of the array due to interferers, mutual coupling between the elements, and near-field scatterers is preprocessed by applying a transformation matrix to these voltages through a rigorous electromagnetic analysis tool. This electromagnetic preprocessing technique transforms the voltages that are induced in a nonuniformly spaced array containing real antenna elements to a set of voltages that will be produced in a uniform linear virtual array (ULVA) containing omnidirectional isotropic point radiators. In the transformation matrix we would like to include various electromagnetic effects like mutual coupling between the antenna elements, presence of near-field scatterers and the platform effects on which the antenna array is mounted. This transformation matrix when applied to the actual measured voltages yields an equivalent set of voltages that will be induced in the ULVA. A direct data domain least squares adaptive algorithm is then applied to the processed voltages to extract the SOI in the presence of interferers. Limited numerical examples are presented to illustrate the novelty of the proposed method.
KW - Adaptive signal processing
KW - Antenna array mutual coupling
KW - Nonuniformly spaced arrays
UR - http://www.scopus.com/inward/record.url?scp=0036564363&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036564363&partnerID=8YFLogxK
U2 - 10.1109/TAP.2002.1011223
DO - 10.1109/TAP.2002.1011223
M3 - Article
AN - SCOPUS:0036564363
SN - 0018-926X
VL - 50
SP - 582
EP - 590
JO - IEEE Transactions on Antennas and Propagation
JF - IEEE Transactions on Antennas and Propagation
IS - 5
ER -