Achieving resonance in the Advanced LIGO gravitational-wave interferometer

A. Staley, D. Martynov, R. Abbott, R. X. Adhikari, K. Arai, Stefan Ballmer, L. Barsotti, A. F. Brooks, R. T. Derosa, S. Dwyer, A. Effler, M. Evans, P. Fritschel, V. V. Frolov, C. Gray, C. J. Guido, R. Gustafson, M. Heintze, D. Hoak, K. IzumiK. Kawabe, E. J. King, J. S. Kissel, K. Kokeyama, M. Landry, D. E. McClelland, J. Miller, A. Mullavey, B. Oreilly, J. G. Rollins, J. R. Sanders, R. M S Schofield, D. Sigg, B. J J Slagmolen, N. D. Smith-Lefebvre, G. Vajente, R. L. Ward, C. Wipf

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

Interferometric gravitational-wave detectors are complex instruments comprised of a Michelson interferometer enhanced by multiple coupled cavities. Active feedback control is required to operate these instruments and keep the cavities locked on resonance. The optical response is highly nonlinear until a good operating point is reached. The linear operating range is between 0.01% and 1% of a fringe for each degree of freedom. The resonance lock has to be achieved in all five degrees of freedom simultaneously, making the acquisition difficult. Furthermore, the cavity linewidth seen by the laser is only ~1 Hz, which is four orders of magnitude smaller than the linewidth of the free running laser. The arm length stabilization system is a new technique used for arm cavity locking in Advanced LIGO. Together with a modulation technique utilizing third harmonics to lock the central Michelson interferometer, the Advanced LIGO detector has been successfully locked and brought to an operating point where detecting gravitational-waves becomes feasible.

Original languageEnglish (US)
Article number245010
JournalClassical and Quantum Gravity
Volume31
Issue number24
DOIs
StatePublished - Dec 21 2014

Fingerprint

LIGO (observatory)
gravitational waves
interferometers
cavities
Michelson interferometers
degrees of freedom
detectors
feedback control
locking
lasers
acquisition
stabilization
harmonics
modulation

Keywords

  • Gravitational-wave detector
  • Interferometer
  • LIGO

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Cite this

Staley, A., Martynov, D., Abbott, R., Adhikari, R. X., Arai, K., Ballmer, S., ... Wipf, C. (2014). Achieving resonance in the Advanced LIGO gravitational-wave interferometer. Classical and Quantum Gravity, 31(24), [245010]. https://doi.org/10.1088/0264-9381/31/24/245010

Achieving resonance in the Advanced LIGO gravitational-wave interferometer. / Staley, A.; Martynov, D.; Abbott, R.; Adhikari, R. X.; Arai, K.; Ballmer, Stefan; Barsotti, L.; Brooks, A. F.; Derosa, R. T.; Dwyer, S.; Effler, A.; Evans, M.; Fritschel, P.; Frolov, V. V.; Gray, C.; Guido, C. J.; Gustafson, R.; Heintze, M.; Hoak, D.; Izumi, K.; Kawabe, K.; King, E. J.; Kissel, J. S.; Kokeyama, K.; Landry, M.; McClelland, D. E.; Miller, J.; Mullavey, A.; Oreilly, B.; Rollins, J. G.; Sanders, J. R.; Schofield, R. M S; Sigg, D.; Slagmolen, B. J J; Smith-Lefebvre, N. D.; Vajente, G.; Ward, R. L.; Wipf, C.

In: Classical and Quantum Gravity, Vol. 31, No. 24, 245010, 21.12.2014.

Research output: Contribution to journalArticle

Staley, A, Martynov, D, Abbott, R, Adhikari, RX, Arai, K, Ballmer, S, Barsotti, L, Brooks, AF, Derosa, RT, Dwyer, S, Effler, A, Evans, M, Fritschel, P, Frolov, VV, Gray, C, Guido, CJ, Gustafson, R, Heintze, M, Hoak, D, Izumi, K, Kawabe, K, King, EJ, Kissel, JS, Kokeyama, K, Landry, M, McClelland, DE, Miller, J, Mullavey, A, Oreilly, B, Rollins, JG, Sanders, JR, Schofield, RMS, Sigg, D, Slagmolen, BJJ, Smith-Lefebvre, ND, Vajente, G, Ward, RL & Wipf, C 2014, 'Achieving resonance in the Advanced LIGO gravitational-wave interferometer', Classical and Quantum Gravity, vol. 31, no. 24, 245010. https://doi.org/10.1088/0264-9381/31/24/245010
Staley, A. ; Martynov, D. ; Abbott, R. ; Adhikari, R. X. ; Arai, K. ; Ballmer, Stefan ; Barsotti, L. ; Brooks, A. F. ; Derosa, R. T. ; Dwyer, S. ; Effler, A. ; Evans, M. ; Fritschel, P. ; Frolov, V. V. ; Gray, C. ; Guido, C. J. ; Gustafson, R. ; Heintze, M. ; Hoak, D. ; Izumi, K. ; Kawabe, K. ; King, E. J. ; Kissel, J. S. ; Kokeyama, K. ; Landry, M. ; McClelland, D. E. ; Miller, J. ; Mullavey, A. ; Oreilly, B. ; Rollins, J. G. ; Sanders, J. R. ; Schofield, R. M S ; Sigg, D. ; Slagmolen, B. J J ; Smith-Lefebvre, N. D. ; Vajente, G. ; Ward, R. L. ; Wipf, C. / Achieving resonance in the Advanced LIGO gravitational-wave interferometer. In: Classical and Quantum Gravity. 2014 ; Vol. 31, No. 24.
@article{c748ed4ebca34eabb922a62d3120cd1c,
title = "Achieving resonance in the Advanced LIGO gravitational-wave interferometer",
abstract = "Interferometric gravitational-wave detectors are complex instruments comprised of a Michelson interferometer enhanced by multiple coupled cavities. Active feedback control is required to operate these instruments and keep the cavities locked on resonance. The optical response is highly nonlinear until a good operating point is reached. The linear operating range is between 0.01{\%} and 1{\%} of a fringe for each degree of freedom. The resonance lock has to be achieved in all five degrees of freedom simultaneously, making the acquisition difficult. Furthermore, the cavity linewidth seen by the laser is only ~1 Hz, which is four orders of magnitude smaller than the linewidth of the free running laser. The arm length stabilization system is a new technique used for arm cavity locking in Advanced LIGO. Together with a modulation technique utilizing third harmonics to lock the central Michelson interferometer, the Advanced LIGO detector has been successfully locked and brought to an operating point where detecting gravitational-waves becomes feasible.",
keywords = "Gravitational-wave detector, Interferometer, LIGO",
author = "A. Staley and D. Martynov and R. Abbott and Adhikari, {R. X.} and K. Arai and Stefan Ballmer and L. Barsotti and Brooks, {A. F.} and Derosa, {R. T.} and S. Dwyer and A. Effler and M. Evans and P. Fritschel and Frolov, {V. V.} and C. Gray and Guido, {C. J.} and R. Gustafson and M. Heintze and D. Hoak and K. Izumi and K. Kawabe and King, {E. J.} and Kissel, {J. S.} and K. Kokeyama and M. Landry and McClelland, {D. E.} and J. Miller and A. Mullavey and B. Oreilly and Rollins, {J. G.} and Sanders, {J. R.} and Schofield, {R. M S} and D. Sigg and Slagmolen, {B. J J} and Smith-Lefebvre, {N. D.} and G. Vajente and Ward, {R. L.} and C. Wipf",
year = "2014",
month = "12",
day = "21",
doi = "10.1088/0264-9381/31/24/245010",
language = "English (US)",
volume = "31",
journal = "Classical and Quantum Gravity",
issn = "0264-9381",
publisher = "IOP Publishing Ltd.",
number = "24",

}

TY - JOUR

T1 - Achieving resonance in the Advanced LIGO gravitational-wave interferometer

AU - Staley, A.

AU - Martynov, D.

AU - Abbott, R.

AU - Adhikari, R. X.

AU - Arai, K.

AU - Ballmer, Stefan

AU - Barsotti, L.

AU - Brooks, A. F.

AU - Derosa, R. T.

AU - Dwyer, S.

AU - Effler, A.

AU - Evans, M.

AU - Fritschel, P.

AU - Frolov, V. V.

AU - Gray, C.

AU - Guido, C. J.

AU - Gustafson, R.

AU - Heintze, M.

AU - Hoak, D.

AU - Izumi, K.

AU - Kawabe, K.

AU - King, E. J.

AU - Kissel, J. S.

AU - Kokeyama, K.

AU - Landry, M.

AU - McClelland, D. E.

AU - Miller, J.

AU - Mullavey, A.

AU - Oreilly, B.

AU - Rollins, J. G.

AU - Sanders, J. R.

AU - Schofield, R. M S

AU - Sigg, D.

AU - Slagmolen, B. J J

AU - Smith-Lefebvre, N. D.

AU - Vajente, G.

AU - Ward, R. L.

AU - Wipf, C.

PY - 2014/12/21

Y1 - 2014/12/21

N2 - Interferometric gravitational-wave detectors are complex instruments comprised of a Michelson interferometer enhanced by multiple coupled cavities. Active feedback control is required to operate these instruments and keep the cavities locked on resonance. The optical response is highly nonlinear until a good operating point is reached. The linear operating range is between 0.01% and 1% of a fringe for each degree of freedom. The resonance lock has to be achieved in all five degrees of freedom simultaneously, making the acquisition difficult. Furthermore, the cavity linewidth seen by the laser is only ~1 Hz, which is four orders of magnitude smaller than the linewidth of the free running laser. The arm length stabilization system is a new technique used for arm cavity locking in Advanced LIGO. Together with a modulation technique utilizing third harmonics to lock the central Michelson interferometer, the Advanced LIGO detector has been successfully locked and brought to an operating point where detecting gravitational-waves becomes feasible.

AB - Interferometric gravitational-wave detectors are complex instruments comprised of a Michelson interferometer enhanced by multiple coupled cavities. Active feedback control is required to operate these instruments and keep the cavities locked on resonance. The optical response is highly nonlinear until a good operating point is reached. The linear operating range is between 0.01% and 1% of a fringe for each degree of freedom. The resonance lock has to be achieved in all five degrees of freedom simultaneously, making the acquisition difficult. Furthermore, the cavity linewidth seen by the laser is only ~1 Hz, which is four orders of magnitude smaller than the linewidth of the free running laser. The arm length stabilization system is a new technique used for arm cavity locking in Advanced LIGO. Together with a modulation technique utilizing third harmonics to lock the central Michelson interferometer, the Advanced LIGO detector has been successfully locked and brought to an operating point where detecting gravitational-waves becomes feasible.

KW - Gravitational-wave detector

KW - Interferometer

KW - LIGO

UR - http://www.scopus.com/inward/record.url?scp=84918842131&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84918842131&partnerID=8YFLogxK

U2 - 10.1088/0264-9381/31/24/245010

DO - 10.1088/0264-9381/31/24/245010

M3 - Article

AN - SCOPUS:84918842131

VL - 31

JO - Classical and Quantum Gravity

JF - Classical and Quantum Gravity

SN - 0264-9381

IS - 24

M1 - 245010

ER -