TY - JOUR
T1 - Accuracy and precision of gravitational-wave models of inspiraling neutron star-black hole binaries with spin
T2 - Comparison with matter-free numerical relativity in the low-frequency regime
AU - Kumar, Prayush
AU - Barkett, Kevin
AU - Bhagwat, Swetha
AU - Afshari, Nousha
AU - Brown, Duncan A.
AU - Lovelace, Geoffrey
AU - Scheel, Mark A.
AU - Szilágyi, Béla
N1 - Publisher Copyright:
© 2015 American Physical Society.
PY - 2015/11/4
Y1 - 2015/11/4
N2 - Coalescing binaries of neutron stars and black holes are one of the most important sources of gravitational waves for the upcoming network of ground-based detectors. Detection and extraction of astrophysical information from gravitational-wave signals requires accurate waveform models. The effective-one-body and other phenomenological models interpolate between analytic results and numerical relativity simulations, that typically span O(10) orbits before coalescence. In this paper we study the faithfulness of these models for neutron star-black hole binaries. We investigate their accuracy using new numerical relativity (NR) simulations that span 36-88 orbits, with mass ratios q and black hole spins χBH of (q,χBH)=(7,±0.4),(7,±0.6), and (5,-0.9). These simulations were performed treating the neutron star as a low-mass black hole, ignoring its matter effects. We find that (i) the recently published SEOBNRv1 and SEOBNRv2 models of the effective-one-body family disagree with each other (mismatches of a few percent) for black hole spins χBH≥0.5 or χBH≤-0.3, with waveform mismatch accumulating during early inspiral; (ii) comparison with numerical waveforms indicates that this disagreement is due to phasing errors of SEOBNRv1, with SEOBNRv2 in good agreement with all of our simulations; (iii) phenomenological waveforms agree with SEOBNRv2 only for comparable-mass low-spin binaries, with overlaps below 0.7 elsewhere in the neutron star-black hole binary parameter space; (iv) comparison with numerical waveforms shows that most of this model's dephasing accumulates near the frequency interval where it switches to a phenomenological phasing prescription; and finally (v) both SEOBNR and post-Newtonian models are effectual for neutron star-black hole systems, but post-Newtonian waveforms will give a significant bias in parameter recovery. Our results suggest that future gravitational-wave detection searches and parameter estimation efforts would benefit from using SEOBNRv2 waveform templates when focused on neutron star-black hole systems with q≲7 and χBH≈[-0.9,+0.6]. For larger black hole spins and/or binary mass ratios, we recommend the models be further investigated as NR simulations in that region of the parameter space become available.
AB - Coalescing binaries of neutron stars and black holes are one of the most important sources of gravitational waves for the upcoming network of ground-based detectors. Detection and extraction of astrophysical information from gravitational-wave signals requires accurate waveform models. The effective-one-body and other phenomenological models interpolate between analytic results and numerical relativity simulations, that typically span O(10) orbits before coalescence. In this paper we study the faithfulness of these models for neutron star-black hole binaries. We investigate their accuracy using new numerical relativity (NR) simulations that span 36-88 orbits, with mass ratios q and black hole spins χBH of (q,χBH)=(7,±0.4),(7,±0.6), and (5,-0.9). These simulations were performed treating the neutron star as a low-mass black hole, ignoring its matter effects. We find that (i) the recently published SEOBNRv1 and SEOBNRv2 models of the effective-one-body family disagree with each other (mismatches of a few percent) for black hole spins χBH≥0.5 or χBH≤-0.3, with waveform mismatch accumulating during early inspiral; (ii) comparison with numerical waveforms indicates that this disagreement is due to phasing errors of SEOBNRv1, with SEOBNRv2 in good agreement with all of our simulations; (iii) phenomenological waveforms agree with SEOBNRv2 only for comparable-mass low-spin binaries, with overlaps below 0.7 elsewhere in the neutron star-black hole binary parameter space; (iv) comparison with numerical waveforms shows that most of this model's dephasing accumulates near the frequency interval where it switches to a phenomenological phasing prescription; and finally (v) both SEOBNR and post-Newtonian models are effectual for neutron star-black hole systems, but post-Newtonian waveforms will give a significant bias in parameter recovery. Our results suggest that future gravitational-wave detection searches and parameter estimation efforts would benefit from using SEOBNRv2 waveform templates when focused on neutron star-black hole systems with q≲7 and χBH≈[-0.9,+0.6]. For larger black hole spins and/or binary mass ratios, we recommend the models be further investigated as NR simulations in that region of the parameter space become available.
UR - http://www.scopus.com/inward/record.url?scp=84948798871&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84948798871&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.92.102001
DO - 10.1103/PhysRevD.92.102001
M3 - Article
AN - SCOPUS:84948798871
SN - 1550-7998
VL - 92
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 10
M1 - 102001
ER -