A tailor-made 3-dimensional directional Haar semi-tight framelet for pMRI reconstruction

Yan Ran Li, Lixin Shen, Xiaosheng Zhuang

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


In this paper, we propose a model for parallel magnetic resonance imaging (pMRI) reconstruction, regularized by a carefully designed tight framelet system, that can lead to reconstructed images with much less artifacts in comparison to those from existing models. Our model is motivated from the observations that each receiver coil in a pMRI system is more sensitive to the specific object nearest to the coil, and all coil images are correlated. To exploit these observations, we first stack all coil images together as a 3-dimensional (3D) data matrix, and then design a 3D directional Haar tight framelet (3DHTF) to represent it. After analyzing sparse information of the coil images provided by the high-pass filters of the 3DHTF, we separate the high-pass filters into effective ones and ineffective ones, and we then devise a 3D directional Haar semi-tight framelet (3DHSTF) from the 3DHTF by replacing its ineffective filters with only one filter. This 3DHSTF is tailor-made for coil images, meanwhile, giving a significant saving in computation comparing to the 3DHTF. With the 3DHSTF, we propose an ℓ1-3DHSTF model for pMRI reconstruction. Numerical experiments for MRI phantom and in-vivo data sets are provided to demonstrate the superiority of our ℓ1-3DHSTF model in terms of the efficiency of reducing aliasing artifacts in the reconstructed images.

Original languageEnglish (US)
Pages (from-to)446-470
Number of pages25
JournalApplied and Computational Harmonic Analysis
StatePublished - Sep 2022


  • 3-dimensional framelet regularization
  • Directional Haar tight framelets
  • Semi-tight framelets
  • pMRI
  • ℓ-SPIRiT

ASJC Scopus subject areas

  • Applied Mathematics


Dive into the research topics of 'A tailor-made 3-dimensional directional Haar semi-tight framelet for pMRI reconstruction'. Together they form a unique fingerprint.

Cite this