TY - GEN
T1 - A study of spontaneous transition in swirl-stabilized flames
AU - Boxx, Isaac
AU - Carter, Campbell D.
AU - Geigle, Klaus Peter
AU - Meier, Wolfgang
AU - Akih-Kumgeh, Benjamin
AU - Lewalle, Jacques
N1 - Publisher Copyright:
© 2017 ASME.
PY - 2017
Y1 - 2017
N2 - The goal of this study was to select and test some analysis tools to identify and characterize precursors to the onset of thermo-Acoustic pulsation in a gas turbine combustor. The target flame was a turbulent, swirl-stability ethylene-Air flame operated at φ = 0.91, and 5 bars pressure. 3-component stereoparticle image velocimetry (PIV) measurements, acquired at 9.3 kHz over periods of approximately 4 seconds were used to characterize the flow-field near the exit plane of the combustor. Acoustic measurements and OH∗-chemiluminescence images were acquired synchronously, with OH∗images acquired at every third cycle of the PIV measurement system. Analysis revealed the presence of two characteristic frequencies in the data for the stable flame; a 475 Hz oscillation associated with the shear-layer dynamics and a weak thermoacoustic oscillation 610 Hz. In the excited state, a 720 Hz selfexcited thermo-Acoustic oscillation dominated combustor dynamics. A possible precursor event was identified in the form of a 635 Hz oscillation that appeared in the data 0.15s prior to transition. Bandpass filtering of the velocity data at this frequency showed this oscillation originates in the outer recirculation zone of the combustor.
AB - The goal of this study was to select and test some analysis tools to identify and characterize precursors to the onset of thermo-Acoustic pulsation in a gas turbine combustor. The target flame was a turbulent, swirl-stability ethylene-Air flame operated at φ = 0.91, and 5 bars pressure. 3-component stereoparticle image velocimetry (PIV) measurements, acquired at 9.3 kHz over periods of approximately 4 seconds were used to characterize the flow-field near the exit plane of the combustor. Acoustic measurements and OH∗-chemiluminescence images were acquired synchronously, with OH∗images acquired at every third cycle of the PIV measurement system. Analysis revealed the presence of two characteristic frequencies in the data for the stable flame; a 475 Hz oscillation associated with the shear-layer dynamics and a weak thermoacoustic oscillation 610 Hz. In the excited state, a 720 Hz selfexcited thermo-Acoustic oscillation dominated combustor dynamics. A possible precursor event was identified in the form of a 635 Hz oscillation that appeared in the data 0.15s prior to transition. Bandpass filtering of the velocity data at this frequency showed this oscillation originates in the outer recirculation zone of the combustor.
UR - http://www.scopus.com/inward/record.url?scp=85030720204&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85030720204&partnerID=8YFLogxK
U2 - 10.1115/GT2017-64438
DO - 10.1115/GT2017-64438
M3 - Conference contribution
AN - SCOPUS:85030720204
T3 - Proceedings of the ASME Turbo Expo
BT - Combustion, Fuels and Emissions
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, GT 2017
Y2 - 26 June 2017 through 30 June 2017
ER -