A study of spontaneous transition in swirl-stabilized flames

Isaac Boxx, Campbell D. Carter, Klaus Peter Geigle, Wolfgang Meier, Benjamin Akih-Kumgeh, Jacques Lewalle

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The goal of this study was to select and test some analysis tools to identify and characterize precursors to the onset of thermo-Acoustic pulsation in a gas turbine combustor. The target flame was a turbulent, swirl-stability ethylene-Air flame operated at φ = 0.91, and 5 bars pressure. 3-component stereoparticle image velocimetry (PIV) measurements, acquired at 9.3 kHz over periods of approximately 4 seconds were used to characterize the flow-field near the exit plane of the combustor. Acoustic measurements and OH∗-chemiluminescence images were acquired synchronously, with OH∗images acquired at every third cycle of the PIV measurement system. Analysis revealed the presence of two characteristic frequencies in the data for the stable flame; a 475 Hz oscillation associated with the shear-layer dynamics and a weak thermoacoustic oscillation 610 Hz. In the excited state, a 720 Hz selfexcited thermo-Acoustic oscillation dominated combustor dynamics. A possible precursor event was identified in the form of a 635 Hz oscillation that appeared in the data 0.15s prior to transition. Bandpass filtering of the velocity data at this frequency showed this oscillation originates in the outer recirculation zone of the combustor.

Original languageEnglish (US)
Title of host publicationCombustion, Fuels and Emissions
PublisherAmerican Society of Mechanical Engineers (ASME)
VolumePart F130041-4B
ISBN (Electronic)9780791850855
DOIs
StatePublished - 2017
EventASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, GT 2017 - Charlotte, United States
Duration: Jun 26 2017Jun 30 2017

Other

OtherASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, GT 2017
CountryUnited States
CityCharlotte
Period6/26/176/30/17

ASJC Scopus subject areas

  • Engineering(all)

Fingerprint Dive into the research topics of 'A study of spontaneous transition in swirl-stabilized flames'. Together they form a unique fingerprint.

  • Cite this

    Boxx, I., Carter, C. D., Geigle, K. P., Meier, W., Akih-Kumgeh, B., & Lewalle, J. (2017). A study of spontaneous transition in swirl-stabilized flames. In Combustion, Fuels and Emissions (Vol. Part F130041-4B). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/GT2017-64438