A semi-Markovian decision process based control method for offloading tasks from mobile devices to the cloud

Shuang Chen, Yanzhi Wang, Massoud Pedram

Research output: Chapter in Book/Entry/PoemConference contribution

48 Scopus citations

Abstract

The finite and rather small battery energy capacity in today's mobile devices has limited the functionality that can be integrated into these platforms or the performance and quality of applications that can be delivered to the users. In the last few years, there is a trend toward offloading certain computation-intensive and latency-tolerant local applications and service requests to a mobile cloud computing (MCC) system so as to save the precious battery life while providing the services requested by the users. Each mobile application can be thought of as a sequence of tasks that are executed locally or remotely. In this paper, the problem of optimal task dispatch, transmission, and execution onto the MCC system is considered. To achieve a good balance between the application execution time and power consumption, dynamic voltage and frequency scaling (DVFS) is applied to the local processor in the mobile device, while the transmitter can choose among multiple modulation schemes and bit rates. The rate capacity effect of a battery and power conversion losses in the mobile device are also accounted for so as to have a more realistic model of the remaining battery life. The mobile device is modeled as a semi-Markov decision process (SMDP) and the optimization problem to set the DVFS level and the transmission rate is effectively solved by linear programming combined with a one-dimensional heuristic search. Experimental results show that the proposed algorithm consistently outperforms some baseline algorithms.

Original languageEnglish (US)
Title of host publication2013 IEEE Global Communications Conference, GLOBECOM 2013
Pages2885-2890
Number of pages6
DOIs
StatePublished - 2013
Externally publishedYes
Event2013 IEEE Global Communications Conference, GLOBECOM 2013 - Atlanta, GA, United States
Duration: Dec 9 2013Dec 13 2013

Publication series

NameProceedings - IEEE Global Communications Conference, GLOBECOM
ISSN (Print)2334-0983
ISSN (Electronic)2576-6813

Other

Other2013 IEEE Global Communications Conference, GLOBECOM 2013
Country/TerritoryUnited States
CityAtlanta, GA
Period12/9/1312/13/13

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A semi-Markovian decision process based control method for offloading tasks from mobile devices to the cloud'. Together they form a unique fingerprint.

Cite this