A novel variable transmission with digital hydraulics

Zhenyu Gan, Katelyn Fry, R. Brent Gillespie, C. David Remy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

This paper presents a novel variable transmission system that is based on the concept of digital hydraulics. In the proposed system, sets of rolling-diaphragm cylinders are mounted via different effective lever arms to an input and output joint. A variable subset of these cylinders is connected via three-way two-position on/off valves to a common hydraulic manifold. This introduces a controllable constraint on the hydraulic flow and creates a programmable hydraulic transmission. With three single-acting cylinders, we could realize 37 different transmission ratios. We investigated the nonholonomic flow constraint analytically, in simulation, and with an experimental prototype. Using water as fluid, we show that a very stiff transmission (124.2 Nm/rad) can be achieved within the range of ±6°. Theoretical transmission ratios are tracked with R-squared values of more than 0.996 and backlash is smaller than 1.4%. Furthermore, we show the applicability of the proposed transmission in the simulation of a body-powered knee-ankle exoskeleton.

Original languageEnglish (US)
Title of host publicationIROS Hamburg 2015 - Conference Digest
Subtitle of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5838-5843
Number of pages6
ISBN (Electronic)9781479999941
DOIs
StatePublished - Dec 11 2015
Externally publishedYes
EventIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015 - Hamburg, Germany
Duration: Sep 28 2015Oct 2 2015

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2015-December
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

ConferenceIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015
CountryGermany
CityHamburg
Period9/28/1510/2/15

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint Dive into the research topics of 'A novel variable transmission with digital hydraulics'. Together they form a unique fingerprint.

Cite this